首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The size-dependent static buckling responses of circular, elliptical and skew nanoplates made of functionally graded materials (FGMs) are investigated in this article based on an isogeometric model. The Eringen nonlocal continuum theory is implemented to capture nonlocal effects. According to the Gurtin–Murdoch surface elasticity theory, surface energy influences are also taken into account by the consideration of two thin surface layers at the top and bottom of nanoplate. The material properties vary in the thickness direction and are evaluated using the Mori–Tanaka homogenization scheme. The governing equations of buckled nanoplate are achieved by the minimum total potential energy principle. To perform the isogeometric analysis as a solution methodology, a novel matrix-vector form of formulation is presented. Numerical examples are given to study the effects of surface stress as well as other important parameters on the critical buckling loads of functionally graded nanoplates. It is found that the buckling configuration of nanoplates at small scales is significantly affected by the surface free energy.  相似文献   

2.
This Letter considers the axial instability of double-nanobeam-systems. Eringen's nonlocal elasticity is utilized for modelling the double-nanobeam-systems. The nonlocal theory accounts for the small-scale effects arising at the nanoscale. The small-scale effects substantially influence the instability (or buckling) of double-nanobeam-systems. Results reveal that the small-scale effects are higher with increasing values of nonlocal parameter for the case of in-phase (synchronous) buckling modes than the out-of-phase (asynchronous) buckling modes. The increase of the stiffness of the coupling elastic medium in double-nanobeam-system reduces the small-scale effects during the out-of-phase (asynchronous) buckling modes. Analysis of the scale effects in higher buckling loads of double-nanobeam-system with synchronous and asynchronous modes is also discussed in this Letter. The theoretical development presented herein may serve as a reference for nonlocal theories as applied to the instability analysis of complex-nanobeam-system such as complex carbon nanotube system.  相似文献   

3.
Eringen's nonlocality is incorporated into the shell theory to include the small-scale effects on the axial buckling of single-walled carbon nanotubes (SWCNTs) with arbitrary boundary conditions. To this end, the Rayleigh-Ritz solution technique is implemented in conjunction with the set of beam functions as modal displacement functions. Then, molecular dynamics simulations are employed to obtain the critical buckling loads of armchair and zigzag SWCNTs, the results of which are matched with those of nonlocal shell model to extract the appropriate values of nonlocal parameter. It is found that in contrast to the chirality, boundary conditions have a considerable influence on the proper values of nonlocal parameter.  相似文献   

4.
This paper presents an investigation on the buckling characteristics of nanoscale rectangular plates under bi-axial compression considering non-uniformity in the thickness. Based on the nonlocal continuum mechanics, governing differential equations are derived. Numerical solutions for the buckling loads are obtained using the Galerkin method. The present study shows that the buckling behaviors of single-layered graphene sheets (SLGSs) are strongly sensitive to the nonlocal and non-uniform parameters. The influence of percentage change of thickness on the stability of SLGSs is more significant in the strip-type nonoplates (nanoribbons) than in the square-type nanoplates.  相似文献   

5.
S.C. Pradhan 《Physics letters. A》2009,373(45):4182-4188
Higher order shear deformation theory (HSDT) is reformulated using the nonlocal differential constitutive relations of Eringen. The equations of motion of the nonlocal theories are derived. The developed equations of motion have been applied to study buckling characteristics of nanoplates such as graphene sheets. Navier's approach has been used to solve the governing equations for all edges simply supported boundary conditions. Analytical solutions for critical buckling loads of the graphene sheets are presented. Nonlocal elasticity theories are employed to bring out the small scale effect on the critical buckling load of graphene sheets. Effects of (i) nonlocal parameter, (ii) length, (iii) thickness of the graphene sheets and (iv) higher order shear deformation theory on the critical buckling load have been investigated. The theoretical development as well as numerical solutions presented herein should serve as reference for nonlocal theories as applied to the stability analysis of nanoplates and nanoshells.  相似文献   

6.
S Chakraverty  Laxmi Behera 《中国物理 B》2017,26(7):74602-074602
We present the application of differential quadrature(DQ) method for the buckling analysis of nanobeams with exponentially varying stiffness based on four different beam theories of Euler-Bernoulli, Timoshenko, Reddy, and Levison.The formulation is based on the nonlocal elasticity theory of Eringen. New results are presented for the guided and simply supported guided boundary conditions. Numerical results are obtained to investigate the effects of the nonlocal parameter,length-to-height ratio, boundary condition, and nonuniform parameter on the critical buckling load parameter. It is observed that the critical buckling load decreases with increase in the nonlocal parameter while the critical buckling load parameter increases with increase in the length-to-height ratio.  相似文献   

7.
Explicit expressions are given to study the biaxial buckling of monolayer graphene sheets. Based upon the continuum mechanics, a plate model is adopted in which the small length scale effect is incorporated into the governing equation through the nonlocal elasticity theory of Eringen. By employing the Galerkin method, analytical expressions are derived which allow quick and accurate calculation of the critical buckling loads of monolayer graphene sheets with various boundary conditions from the static deflection under a uniformly distributed load. The effectiveness of the present study is assessed by molecular dynamics simulations as a benchmark of good accuracy.  相似文献   

8.
Based on the first order shear deformation theory and classic buckling theory, the paper investigates the creep buckling behavior of viscoelastic laminated plates and laminated circular cylindrical shells. The analysis and elaboration of both instantaneous elastic critic load and durable critic load are emphasized. The buckling load in phase domain is obtained from governing equations by applying Laplace transform, and the instantaneous elastic critic load and durable critic load are determined according to the extreme value theorem for inverse Laplace transform. It is shown that viscoelastic approach and quasi-elastic approach yield identical solutions for these two types of critic load respectively. A transverse disturbance model is developed to give the same mechanics significance of durable critic load as that of elastic critic load. Two types of critic loads of boron/epoxy composite laminated plates and circular cylindrical shells are discussed in detail individually, and the influencing factors to induce creep buckling are revealed by examining the viscoelasticity incorporated in transverse shear deformation and in-plane flexibility.  相似文献   

9.
The effects of a single-edge crack and its locations on the buckling loads, natural frequencies and dynamic stability of circular curved beams are investigated numerically using the finite element method, based on energy approach. This study consists of three stages, namely static stability (buckling) analysis, vibration analysis and dynamic stability analysis. The governing matrix equations are derived from the standard and cracked curved beam elements combined with the local flexibility concept. Approximation for the displacements using coupled interpolations based on the constant-strain, linear-curvature element (SC) has yielded results with reasonable accuracy. The numerical results obtained from the present finite element model are found to be in good agreement with those, both experimental and analytic, of other researchers in the existing literature. Results show that the reductions in buckling load and natural frequency depend not only on the crack depth and crack position, but also on the related mode shape. Analyses also show that the crack effect on the dynamic stability of the considered curved beam is quite limited.  相似文献   

10.
In this Letter, the thermal buckling properties of carbon nanotube with small scale effects are studied. Based on the nonlocal continuum theory and the Timoshenko beam model, the governing equation is derived and the nondimensional critical buckling temperature is presented. The influences of the scale coefficients, the ratio of the length to the diameter, the transverse shear deformation and rotary inertia are discussed. It can be observed that the small scale effects are significant and should be considered for thermal analysis of carbon nanotube. The nondimensional critical buckling temperature becomes higher with the ratio of length to diameter increasing. Furthermore, for smaller ratios of the length to the diameter and higher mode numbers, the transverse shear deformation and rotary inertia have remarkable influences on the thermal buckling behaviors.  相似文献   

11.
The structural behavior of a shallow arch is highly nonlinear, and so when the amplitude of the oscillation of the arch produced by a suddenly applied load is sufficiently large, the oscillation of the arch may reach a position at its primary unstable equilibrium path or secondary bifurcation unstable equilibrium path, leading the arch to buckle dynamically. This paper presents an analytical study of the nonlinear dynamic in-plane buckling of a shallow circular arch under a uniform radial load that is applied suddenly and with an infinite duration. The principle of conservation of energy is used to establish the criterion for dynamic buckling of the arch, and the analytical solution for the dynamic buckling load is derived. It is shown that under a suddenly applied uniform radial load, a shallow pinned–fixed arch has a unique possible dynamic buckling load, while shallow pinned–pinned and fixed–fixed arches may have two possible dynamic buckling loads: a lower dynamic buckling load and an upper dynamic buckling load. The dynamic buckling loads of a shallow arch under a suddenly applied uniform radial load with infinite duration are found to be lower than their static counterparts, and to increase with an increase of the arch included angle and slenderness. The effect of static preloading on the dynamic buckling of an arch is also investigated. It is found that the pre-applied static load decreases the dynamic buckling load of the arch, but increases the sum of the pre-applied load and the dynamic buckling load.  相似文献   

12.
In the present work, thermal buckling of single-layered graphene sheets lying on an elastic medium is analyzed. For this purpose, the sinusoidal shear deformation plate theory in tandem with the nonlocal continuum theory, which takes the small scale effects into account, is employed. The non-linear stability equations, which contain the reaction of Winkler–Pasternak elastic substrate medium, are derived and then solved analytically for a plate with various boundary conditions and based on various plate theories. Closed form solutions are formulated for three types of thermal loadings as uniform, linear and nonlinear temperature rise through the thickness of the plate. A number of examples are presented to illustrate the numerical results concerned with the buckling temperature response of nanoplates resting on two-parameter elastic foundations. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, nonlocal parameter, and elastic foundation parameters are all investigated.  相似文献   

13.
谢根全  韩旭  龙述尧  田建辉 《物理学报》2005,54(9):4192-4197
基于非局部弹性理论,在考虑小尺度效应影响的情况下,建立了单壁碳纳米管在均匀轴向外 部压力下的壳体模型. 得到了单壁碳纳米管的轴向受压屈曲的临界条件,验证了小尺度效应 对纳米管轴向受压屈曲的影响. 经典的壳体模型理论由于没有考虑小尺度效应影响而导致碳 纳米管轴向屈曲临界压力值偏高. 关键词: 非局部弹性理论 碳钠米管 小尺度效应 轴向受压  相似文献   

14.
《Physics letters. A》2006,349(5):370-376
A nonlocal multiple-shell model is developed for the elastic buckling of multi-walled carbon nanotubes under uniform external radial pressure on the basis of theory of nonlocal elasticity. The effect of small length scale is incorporated in the formulation. An explicit expression is derived for the critical buckling pressure for a double-walled carbon nanotube. The influence of the small length scale on the buckling pressure is examined. It is concluded that the critical buckling pressure for a carbon nanotube could be overestimated by the classic (local) shell model due to ignoring the effect of small length scale.  相似文献   

15.
S. Adali 《Physics letters. A》2008,372(35):5701-5705
Variational principles are derived for multi-walled carbon nanotubes undergoing buckling using the semi-inverse method. Derivations are based on the continuum modelling of nanotubes taking into account small scale effects via the nonlocal theory of elasticity. Natural and geometric boundary conditions for multi-walled nanotubes are derived which leads to a set of coupled boundary conditions.  相似文献   

16.
The purpose of this study is to describe the axial buckling behavior of chiral single-walled carbon nanotubes (SWCNTs) using a combined continuum-atomistic approach. To this end, the nonlocal Flugge shell theory is implemented into which the nonlocal elasticity of Eringen incorporated. Molecular mechanics is used in conjunction with density functional theory (DFT) to precisely extract the effective in-plane and bending stiffnesses and Poisson's ratio used in the developed nonlocal Flugge shell model. The Rayleigh-Ritz procedure is employed to analytically solve the problem in the context of calculus of variation. The results generated from the present hybrid model are compared with those from molecular dynamics simulations as a benchmark of good accuracy and excellent agreement is achieved. The influences of small scale factor, commonly used boundary conditions and chirality on the critical buckling load are fully explored. It is indicated that the importance of the small length scale is affected by the type of boundary conditions considered.  相似文献   

17.
An investigation is reported of the thermal buckling and postbuckling of axially compressed double-walled carbon nanotubes (CNTs) subjected to a uniform temperature rise. The double-walled carbon nanotube is modeled as a nonlocal shear deformable cylindrical shell, which contains small-scale effects and van der Waals interaction forces. The governing equations are based on higher order shear deformation shell theory with a von Kármán–Donnell-type of kinematic nonlinearity and include thermal effects. Temperature-dependent material properties, which come from molecular dynamics (MD) simulations, and an initial point defect, which is simulated as a dimple on the tube wall, are both taken into account. The small-scale parameter, e 0 a, is estimated by matching the buckling temperature of CNTs observed from the MD simulation results with the numerical results obtained from the nonlocal shear deformable shell model. The numerical illustrations concern the thermal postbuckling response of perfect and imperfect, single- and double-walled CNTs with different values of compressive load ratio. The results show that buckling temperature and postbuckling behavior of nanotubes are very sensitive to the small-scale parameter. The results reveal that temperature-dependent material properties have a significant effect on the thermal postbuckling behavior of both single- and double-walled CNTs.  相似文献   

18.
In the present investigation, the axial buckling and post-buckling configurations of single-walled carbon nanotubes (SWCNTs) are studied including the thermal environment effect. For this purpose, Eringen’s nonlocal elasticity continuum theory is implemented into the classical Euler–Bernoulli beam theory to represent the SWCNTs as a nonlocal elastic beam model. A closed-form analytical solution is carried out to analyze the static response of SWCNTs in their post-buckling state in which the axial buckling load is assumed to be beyond the critical axial buckling load. Common sets of boundary conditions, named simply supported–simply supported (SS–SS), clamped–clamped (C–C), and clamped–simply supported (C–SS), are considered in the investigation. Selected numerical results are given to represent the variation of the carbon nanotube’s mid-span deflection with the applied axial load corresponding to various nonlocal parameters, length-to-diameter aspect ratios, temperature changes, and end supports. Moreover, a comparison between the post-buckling behaviors of SWCNTs at low- and high-temperature environments is presented. It is found that the size effect leads to a decrease of the axial buckling load especially for SWCNTs with C–C boundary conditions. Also, it is revealed that the value of the temperature change plays different roles in the post-buckling response of SWCNTs at low- and high-temperature environments.  相似文献   

19.
The lateral-torsional stability of circular arches subjected to radial and follower distributed loading is treated herein. Three loading cases are studied, including the radial load with constant direction, the radial load directed towards the arch centre, and the follower radial load (hydrostatic load), as treated by Nikolai in 1918. For the three cases, the buckling loads are first obtained from a static analysis. As the case of the follower radial load (hydrostatic load) is a non-conservative problem, the dynamic approach is also used to calculate the instability load. The governing equations for out-of-plane vibrations of circular arches under radial loading are then derived, both with and without Wagner's effect. Flutter instabilities may appear for sufficiently large values of opening angle, but flutter cannot occur before divergence for the parameters of interest (civil engineering applications). Therefore, it is concluded that the static approach necessarily leads to the same result as the dynamic approach, even in the non-conservative case.  相似文献   

20.
In the present paper, the sinusoidal shear deformation plate theory (SDPT) is reformulated using the nonlocal differential constitutive relations of Eringen to analyze the bending and vibration of the nanoplates, such as single-layered graphene sheets, resting on two-parameter elastic foundations. The present SDPT is compared with other plate theories. The nanoplates are assumed to be subjected to mechanical and thermal loads. The equations of motion of the nonlocal model are derived including the plate foundation interaction and thermal effects. The governing equations are solved analytically for various boundary conditions. Nonlocal theory is employed to bring out the effect of the nonlocal parameter on the bending and natural frequencies of the nanoplates. The influences of nonlocal parameter, side-to-thickness ratio and elastic foundation moduli on the displacements and vibration frequencies are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号