首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Raman spectroscopy and Hall measurements have been carried out to investigate the differences in near‐surface charge carrier modulation in high energy (~100 MeV) silicon ion (Si8+) and oxygen ion (O7+) irradiated n‐GaAs. In the case of O ion irradiation, the observed decrease in carrier concentration with increase in ion fluence could be explained in the view of charge compensation by possible point defect trap centers, which can form because of elastic collisions of high energy ions with the target nuclei. In Si irradiated n‐GaAs one would expect the carrier compensation to occur at a fluence of 2.5 × 1013 ions/cm2, if the same mechanism of acceptor state formation, as in case of O irradiation, is considered. However, we observe the charge compensation in this system at a fluence of 5 × 1012 ions/cm2. We discuss the role of the complex defect states, which are formed because of the interaction of the primary point defects, in determining carrier concentration in a Si irradiated n‐GaAs wafer. The above results are combined with the reported data from the literature for high energy silver ion irradiated n‐GaAs, in order to illustrate the effect of both electronic and nuclear energy loss on trap creation and charge compensation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Ni/SiO2/Si MOS structures were fabricated on n-type Si wafers and were irradiated with 50 MeV Li3+ ions with fluences ranging from 1×1010 to 1×1012 ions/cm2. High frequency CV characteristics are studied in situ to estimate the build-up of fixed and oxide charges. The nature of the charge build-up with ion fluence is analyzed. Defect levels in bulk Si and its properties such as activation energy, capture cross-section, trap concentration and carrier lifetimes are studied using deep-level transient spectroscopy. Electron traps with energies ranging from 0.069 to 0.523 eV are observed in Li ion-irradiated devices. The dependence of series resistance, substrate doping and accumulation capacitance on Li ion fluence are clearly explained. The study of dielectric properties (tan δ and quality factor) confirms the degradation of the oxide layer to a greater extent due to ion irradiation.  相似文献   

3.
《Current Applied Physics》2009,9(6):1181-1185
Ni/n-type 6H-SiC Schottky barrier diode (SBD) has been characterized by the capacitance–voltage (CV) technique as a function of temperature (120–500 K). The barrier height (BH) was determined as 1.36 eV at the temperature of 300 K and frequency of 50 kHz from CV measurements, respectively. The BH for the Ni/n-type 6H-SiC does not exhibit temperature dependence between 260 and 500 K, while it changes slightly with decreasing temperature between 120 and 240 K. Deep level transient spectroscopy (DLTS) has been used to investigate deep levels in Ni/n-type 6H-SiC SBD. The four electron trap centers to be present at temperatures 120, 200, 350 and 415 K have been realized. The origin of these defects has been decided to be intrinsic nature and it has been found the correlation between CV and DLTS measurements quite interesting.  相似文献   

4.
This work examines the properties of polyvinyl alcohol (PVA)/starch film containing glycerol as a plasticizer under exposure to different nitrogen ion fluence. The prepared PVA/starch blend was irradiated with ion fluence from 3 × 1017 to 12 × 1017 ions.cm−2. From FTIR, the ion beam irradiation attack and weakens the C–H bond in PVA/starch blend. From XRD findings, the crystallite size of the blend decreased at 3 × 1017 ions/cm2 while it increased at higher fluence up to 9 × 1017 ions/cm2. This indicates the degradation of the blend at low ion fluence compared to crosslinking at high ion fluence. Also, the optical bandgap of the blend was decreased with an increase in ion fluence. Furthermore, the effect of N+ ions on some optical dispersion parameters is studied. The thermal stability of the PVA/starch blend shows a decrease in thermal stability upon irradiation with 3 × 1017 ions/cm2 compared to higher thermal stability at higher doses up to 9 × 1017 ions/cm2.  相似文献   

5.
Polycarbonate/polystyrene bilayer films prepared by solvent-casting method were irradiated with 55 MeV carbon ion beam at different fluences ranging from 1×1011 to 1×1013 ions cm?2. The structural, optical, surface morphology and dielectric properties of these films were investigated by X-ray diffraction (XRD), UV–visible spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, optical microscopy and dielectric measurements. The XRD pattern shows that the percentage of crystallinity decreases while inter-chain separations increase with ion fluence. UV–visible spectroscopy shows that the energy band gap decreases and the number of carbon atoms in nanoclusters increase with the increase in ion fluences. The refractive index is also found to decrease with the increase in the ion fluence. Optical microscopy shows that after irradiation polymeric bilayer films color changes with ion fluences. The FTIR spectra evidenced a very small change in cross-linking and chain scissoring at high fluence. Dielectric constant decreases while dielectric loss and AC conductivity increase with ion fluences.  相似文献   

6.
《Solid State Ionics》2006,177(13-14):1107-1110
The dispersion curves of the dielectric response of NH4HSO4 show that the corrected imaginary part of permittivity, εʺ, and its real part ε′ versus frequency reveal a dielectric relaxation around 9.1 × 105 Hz at 31 °C, which shifts to higher frequencies (∼ 106 Hz) as the temperatures increases. The relaxation frequency shows an activated relaxation process over the temperature range 31–83 °C with activation energy Ea = 0.14 eV, which is close to that derived from the dc conductivity. We suggest that the observed dielectric relaxation could be produced by the H+ jump and SO4 reorientation that cause distortion and change the local lattice polarizability inducing dipoles like HSO4.  相似文献   

7.
Dielectric relaxation properties of solid solutions La1?xBaxF3?x (x ? 0105) have been studied by thermally stimulated depolanzation current (TSDC)- and a c. dielectric loss (DL) techniques.For x < 30 × 10?3 the dielectric spectra show a relaxation peak which is ascribed to a simple associate of a substitutional dopant ion and a fluoride ion vacancy (BaLaVF)x in nearest-neighbour position, the vacancy being confined to the B sublattice For x values of about 1.3 × 10?2 a relaxation peak appears which is tentatively attributed to a similar type of defect associate with the vacancy now confined to the A sublattice of the tysonite anion array One broad relaxation peak dominates the TSDC and DL spectra over the whole concentration range This peak is due to the relaxation of macroscopic space charge, i e ionic conductivity The low-temperature ion conductivity has been determined for several solid solutions, and extrapolates to the high-temperature conductivity determined previously with impedance spectroscopy Below liquid-nitrogen temperature three relaxations are observed, and ascribed to electronic transitions in cenum impurities. A computer programme has been developed to analyse TSDC relaxation peaks, taking dipole-dipole interactions into account Relaxation parameters and dipole concentrations are presented.  相似文献   

8.
This paper reports on the thermo (TL), iono (IL) and photoluminescence (PL) properties of nanocrystalline CaSiO3:Eu3+ (1–5 mol %) bombarded with 100 MeV Si7+ ions for the first time. The effect of different dopant concentrations and influence of ion fluence has been discussed. The characteristic emission peaks 5D07FJ (J=0, 1, 2, 3, 4) of Eu3+ ions was recorded in both PL (1×1011–1×1013 ions cm?2) and IL (4.16×1012–6.77×1012 ions cm?2) spectra. It is observed that PL intensity increases with ion fluence, whereas in IL the peaks intensity increases up to fluence 5.20×1012 ions cm?2, then it decreases. A well resolved TL glow peak at ~304 °C was recorded in all the ion bombarded samples at a warming rate of 5 °C s?1. The TL intensity is found to be maximum at 5 mol% Eu3+ concentration. Further, TL intensity increases sub linearly with shifting of glow peak towards lower temperature with ion fluence.  相似文献   

9.
《Applied Surface Science》2005,239(3-4):342-352
In order to study the effect of tin ion implantation on the aqueous corrosion behavior of zirconium, specimens were implanted with tin ions to a fluence ranging from 1 × 1020 to 5 × 1021 ions/m2, using a metal vapor vacuum arc source (MEVVA) at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer were analyzed by X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES) respectively. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the micro-morphology and microstructure of tin-implanted samples. When the fluence was greater than 1 × 1020 ions/m2, many small tin balls were produced in the implanted surface. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zirconium in a 1N H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of zirconium implanted with 1 × 1020 ions/m2. When the fluence is higher than 1 × 1020 ions/m2, the corrosion resistance of zirconium implanted with tin ions decreased compared with that of the non-implanted zirconium. Finally, the mechanism of the corrosion behavior of the tin-implanted zirconium is discussed.  相似文献   

10.
Measurements of the dielectric properties of AgTlSe2 in the solid and liquid states were carried out in a wide range of frequencies and temperatures. The material displayed dielectric dispersion, and a loss peak was observed. Cole-Cole diagrams have been used to determine the distribution parameter (a) and the molecular relaxation time (). The process of dielectric relaxation (loss) and ac conduction was attributed to the correlated barrier hopping model suggested by Elliott for amorphous solids, where two carriers simultaneously hop over a barrier between charged defectD + andD states.  相似文献   

11.
l-arginine monohydrochloride monohydrate (LAHCl) single crystals have been implanted with 100 keV H+ ions at different ion fluence ranging from 1012 to 1015 ions/cm2. Implanted LAHCl single crystals have been investigated for property changes. Crystal surface and crystalline perfection of the pristine and implanted crystals were analyzed by atomic force microscope and high-resolution X-ray diffraction studies, respectively. Optical absorption bands induced by colour centers, refractive index and birefringence, mechanical stability and dielectric constant of implanted crystals were studied at different ion fluence and compared with that of pristine LAHCl single crystal.  相似文献   

12.
The effect of 60 keV Ar+-ion beam sputtering on the surface topography of p-type GaAs(1 0 0) was investigated by varying angle of incidence of the ion (0–60°) with respect to substrate normal and the ion fluence (2 × 1017–3 × 1018 ions/cm2) at an ion flux of 3.75 × 1013 ions/cm2-s. For normal incidence and at a fluence of 2 × 1017 ions/cm2, holes and islands are observed with the former having an average size and density of 31 nm and 4.9 × 109 holes/cm2, respectively. For 30° and 45° off-normal incidence, in general, a smooth surface appears which is unaffected by increase of fluence. At 60° off-normal incidence dots are observed while for the highest fluence of 3 × 1018 ions/cm2 early stage of ripple formation along with dots is observed with amplitude of 4 nm. The applicability and limitations of the existing theories of ion induced pattern formation to account for the observed surface topographies are discussed.  相似文献   

13.
Poly vinylidene chloride (PVDC) irradiated with lithium (50 MeV), carbon (85 MeV), nickel (120 MeV) and silver ions (120 MeV) having fluence range of 1 × 1011 ions/cm2 to 3 × 1012 ions/cm2 have been studied using different techniques i.e. XRD (X-ray diffraction), FTIR (Fourier transform infrared), UV–Visible and TGA (thermo-gravimetric analysis). In XRD analysis, the intensity of diffraction peaks of PVDC irradiated with lithium ions was enhanced at lower fluence as compared to pristine. The shift in optical absorption edge in irradiated PVDC was correlated with the decrease in optical band gap energy. The distinguishable characteristic peaks were observed due to UV–Vis analysis, in lithium irradiated samples of PVDC at higher fluences. The % age decrease in optical band gap energy for the respective ions were 30.9%, 34.16%, 81.1%, 87.02% respectively. Formation of double carbon bonds and breaking of C–O and C–Cl bonds with the release of Cl in irradiated PVDC was observed in FTIR spectra. In Thermogravimetric analysis (TGA), the % age weight loss observed for irradiated samples with increase in ion fluence was lesser than the % age weight loss observed in pristine sample.  相似文献   

14.
The study of the dielectric properties of a CdIn2S4〈3 mol % Cu〉 single crystal in alternating-current (ac) electric fields with frequencies f = 5 × 104?3.5 × 107 Hz has revealed the origin of dielectric loss (relaxation loss that is changed by the through current loss at high frequencies). It has been found that CdIn2S4〈Cu〉 has permittivity increment Δ?′ = 123, relaxation frequency f r = 2.3 × 104 Hz, and relaxation time τ = 43 μs. The doping of CdIn2S4 single crystal with copper (3 mol %) is established to substantially increase the permittivity (?′), dielectric loss tangent (tanδ), and ac conductivity (σac). In this case, the frequency dispersion of ?′ and tanδ increases and that of σac decreases.  相似文献   

15.
p-CuIn0.7Ga0.3(Se(1?x)Tex)2 type thin films were synthesized by thermal evaporation method on Mo coated glass substrates. To obtain Al/CuIn0.7Ga0.3(Se(1?x)Tex)2/Mo Schottky diode structure for two compositions of x = 0.0 and 0.6, Al metal was evaporated on upper surface of CuIn0.7Ga0.3(Se(1?x)Tex)2 as a front contact. Al/p-CuIn0.7Ga0.3(Se(1?x)Tex)2/Mo structures were annealed temperature range from 150 °C to 300 °C for 10 min under vacuum. The electrical and dielectrical properties of Al/p-CuIn0.7Ga0.3(Se(1?x)Tex)2 (CIGSeTe) Schottky barrier diodes (SBD) have been investigated. Capacitance–Voltage (CV) characteristics, Conductance–Voltage (G/wV) characteristics and interface state density were studied in order to obtain electrical and dielectrical parameters. The effects of interface state density (Nss), series resistance (Rs), the dielectric constant (?′), dielectric loss (?″), dielectric loss tangent (tan δ), ac electrical conductivity (σac) and carrier doping densities were calculated from the CV and G/wV measurements and plotted as a function of annealing temperature. It was observed that the values of carrier doping density NA for annealing temperature at 150 °C decreased from 2.83 × 10+15 cm?3 to 2.87 × 10+14 cm?3 with increasing Te content from x = 0.0 to 0.6. The series resistance for x = 0.0 found to be between 10 and 75 Ω and between 50 and 230 Ω for x = 0.6 in the range of annealing temperature at 150–300 °C.  相似文献   

16.
The volume density of trapping states is derived throughout the metal-dielectric interface. This has been facilitated by equating the dielectric loss component to the tunneling conductance using a new relaxation time formulation. Subsequently, the trap distribution at the Al/InPO4 interface has featured a peak of 1.15×1019 cm–3 at about 15 Å from the Al contacting electrode. The new approach could be extended to deal with semiconductor-dielectric interfaces.  相似文献   

17.
Metal-semiconductor diode of Au/n-GaAs is studied under the irradiation of swift heavy ion (SHI) beam (80 MeV 16O6+), using in situ current-voltage characterization technique. The diode parameters like ideality factor, barrier height, and leakage current are observed to vary with irradiation fluence. Significantly, the diode performance improves at a high fluence of 2 × 1013 ions cm−2 with a large decrease of reverse leakage current in comparison to the original as deposited sample. The Schottky barrier height (SBH) also increases with fluence. At a high irradiation fluence of 5 × 1013 ions cm−2 the SBH (0.62 ± 0.01 eV) is much larger than that of the as deposited sample (0.55 ± 0.01 eV). The diode parameters remain stable over a large range of irradiation up to fluence of 8 × 1013 ions cm−2. A prominent annealing effect of the swift ion beam owing to moderate electronic excitation and high ratio of electronic energy loss to the nuclear loss is found to be responsible for the improvement in diode characteristics.  相似文献   

18.
The photostimulated luminescence (PSL) properties of the phosphor BaFBr:Eu after ion beam irradiation was analyzed; in particular, the PSL intensity dependent on ion fluence. The PSL intensity increased linearly with the ion fluence up to 1012 ions/cm2, and subsequently decreased gradually. The ion fluence dependence was observed to be similar among samples containing different F centers or different Eu concentrations. The fluence dependence was quantitatively analyzed based on a trapping model, in which competition between the trapping processes to storage centers and radiation defects is assumed; the model explained the experimental data quantitatively. The results indicate that radiation defects influence the PSL properties via the trapping of photostimulated electrons.  相似文献   

19.
Nanocomposite polymer electrolyte thin films of polyvinyl alcohol (PVA)-orthophosphoric acid (H3PO4)-Al2O3 have been prepared by solution cast technique. Films are irradiated with 50 MeV Li3+ ions having four different fluences viz. 5?×?1010, 1?×?1011, 5?×?1011, and 1?×?1012 ions/cm2. The effect of irradiation on polymeric samples has been studied and characterized. X-ray diffraction spectra reveal that percent degree of crystallinity of samples decrease with ion fluences. Glass transition and melting temperatures have been also decreased as observed in differential scanning calorimetry. A possible complexation/interaction has been shown by Fourier transform infrared spectroscopy. Temperature-dependent ionic conductivity shows an Arrhenius behavior before and after glass transition temperature. It is observed that ionic conductivity increases with ion fluences and after a critical fluence, it starts to decrease. Maximum ionic conductivity of ~2.3?×?10?5 S/cm owing to minimum activation energy of ~0.012 eV has been observed for irradiated electrolyte sample at fluence of 5?×?1011 ions/cm2. The dielectric constant and dielectric loss also increase with ion fluences while they decrease with frequency. Transference number of ions shows that the samples are of purely ionic in nature before and after ion irradiation.  相似文献   

20.
The frequency dependent electrical properties of Ag/n-CdO/p-Si structure has been investigated using capacitance–voltage (C–V) and conductance–voltage (G/ω–V) characteristics in the frequency range 10 kHz–1 MHz in the room temperature. The increase in capacitance at lower frequencies is observed as a signature of interface states. The presence of the interfaces states (NSS) is also evidenced as a peak in the capacitance–frequency characteristics. Furthermore, the voltage and frequency dependence of series resistance were calculated from the C–V and G/ω–V measurements and plotted as functions of voltage and frequency. The distribution profile of RS–V gives a peak in the depletion region at low frequencies and disappears with increasing frequencies. The values of interface state densities and series resistance from capacitance–voltage-frequency (C–V-f) and conductance–voltage-frequency (G/ω–V-f) measurements were obtained in the ranges of 1.44×1016–7.59×1012 cm?2 eV?1 and 341.49–8.77 Ω, respectively. The obtained results show that the C–V-f and G/ω–V-f characteristics confirm that the interface states density (NSS) and series resistance (RS) of the diode are important parameters that strongly influence the electrical parameters in Ag/n-CdO/p-Si structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号