首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, samples of poly(N-vinyl carbazole) (PVK)-grafted multiwalled carbon nanotubes (MWCNTs) were synthesized via free radical reaction. The ready-made PVK was allowed to react directly with MWCNTs at 70 °C in the presence of azo-bis-isobutyronitrile (AIBN). The purified deep grey products, which can dissolve in common organic solvents such as chloroform and 1,2-dichlorobenzene (DCB), were then characterized by FTIR spectra, TEM, TGA, elemental analysis, XPS, UV-vis spectra and Raman spectra. It was confirmed that PVK chains were grafted onto the surface of the carbon nanotubes (CNTs). The optical limiting properties of these PVK-grafted MWCNTs samples were investigated by open-aperture z-scan method. All of the samples of PVK-modified carbon nanotubes in chloroform showed optical limiting behavior better than that of C60 in toluene.  相似文献   

2.
Surface functionalization of multi-walled carbon nanotubes (MWCNTs), with amino groups via chemical modification of carboxyl groups introduced on the nanotube surface, using O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (N-HATU) and N,N-diisopropylethylamine (DIEA) is reported. The N-HATU coupling agent provides faster reaction rate and the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. The amines, 1,6-hexanediamine (HDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and 1,4-phenylenediamine (PDA) were used. The resulting materials were characterized with different techniques such as FTIR, XRD, elemental analysis, TGA, TEM, UV-vis spectroscopy and cyclic voltammetry. MWCNTs functionalized with PDA posses the best dispersibility and electron transfer properties in comparison to the others amines. Functionalized MWCNTs, at the concentrations between 1 and 50 μg ml−1, were not cytotoxic for the fibroblast L929 cell line. However, the concentrations of MWCNTs higher of 10 μg ml−1 reduced cell growth and this effect correlated positively with the degree of their uptake by L929 cells.  相似文献   

3.
In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.  相似文献   

4.
A new pyrolysis technique has been developed for the synthesis of multi-walled carbon nanotubes (MWCNTs). In this simple method diethyl ether and nickelocene is pyrolysized in a reaction quartz tube without using carrier gas. The samples are prepared at pyrolysis temperatures of 650 and 950 °C and the effect of temperature on the tube morphology investigated. Purification has been done following the standard oxidation and acid bath treatment. The as-synthesized and purified nanotubes have been characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA) and micro-Raman spectroscopy. The technique has great advantages such as low cost and easy operation for the production of CNTs.  相似文献   

5.
The effect of acetylene partial pressure on the structural and morphological properties of multi-walled carbon nanotubes (MWCNTs) synthesized by CVD on iron nanoparticles dispersed in a SiO2 matrix as catalyst was investigated. The general growing conditions were: 110 cm3/min flow rate, 690 °C synthesis temperature, 180 Torr over pressure and two gas compositions: 2.5% and 10% C2H2/N2. The catalyst and nanotubes were characterized by HR-TEM, SEM and DRX. TGA and DTA were also carried out to study degradation stages of synthesized CNTs. MWCNTs synthesized with low acetylene concentration are more regular and with a lower amount of amorphous carbon than those synthesized with a high concentration. During the synthesis of CNTs, amorphous carbon nanoparticles nucleate on the external wall of the nanotubes. At high acetylene concentration carbon nanoparticles grow, covering all CNTs’ surface, forming a compact coating. The combination of CNTs with this coating of amorphous carbon nanoparticles lead to a material with high decomposition temperature.  相似文献   

6.
By simple grinding, water-soluble linear polymers poly(4-vinylpyridine) (PVP) wrapped around multiwalled carbon nanotubes (MWCNTs) and thus rendered them reversibly soluble in water, ethanol, and DMF. The structure and properties of the resulting nanocomposite, CNTs wrapped by PVP, were evaluated by SEM, AFM, TGA, and FTIR spectroscopy. Individual tubes are clearly observed after PVP-wrapped nanotubes were spin-coated onto a silicon wafer as determined by SEM and AFM. Subsequently, a novel and facile approach to attach high-density and uniform size gold nanoparticles on individual multiwalled carbon nanotubes was achieved by in situ reduction of HAuCl4 in the homogeneous aqueous solution of MWCNTs–PVP.  相似文献   

7.
Diamines are known to act as a medium to bind miscellaneous compounds to carbon nanotubes (CNT). However, they are commonly applied in a tedious manner. Here, multi-walled carbon nanotubes (MWCNTs) were functionalized by a series of diamine molecules (ethylenediamine, 1,6-hexamethylenediamine and 1,4-diaminobenzen) in a one-pot, rapid microwave-assisted method. Surface functionality groups and morphology of MWCNTs were analyzed by infrared spectroscopy, thermogravimetric analysis, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results consistently confirmed the formation of diamines functionalities on MWCNTs, while the structure of MWCNT has remained relatively intact. This simple and efficient process may play an important role for realizing miscellaneous functionalization of CNTs.  相似文献   

8.
In this work we report the covalent functionalization of multiwalled carbon nanotubes (MWCNTs) with polyacrylonitrile (PAN) and polyvinylpyridine (PVP) by the graft from method. Differences in the electronic distribution of both polymers resulted in different interaction between polymers and the nanotubes. It was found that PVP chains wrapped the nanotubes while nanotubes functionalized with PAN presented PAN chains forming amorphous entanglements on the nanoscale linked to the MWCNTs. Differences in the conformation between both polymers and the MWCNTs can be attributed to interactions between the aromatic groups in PVP and the MWCNTs through π–π stacking. The absence of aromatic groups in the case of the PAN chains favours the interaction between them. The functionalization efficiency was characterized using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and UV–vis spectroscopy, while morphological changes were characterized by high resolution transmission electron microscopy.  相似文献   

9.
《Composite Interfaces》2013,20(2-3):197-215
This study is focused on fabrication and characterization of multi-walled carbon nanotubes (MWCNTs) reinforced epoxy composites to understand variation of mechanical and thermal properties. Samples were prepared by infusing both amine functionalized and non-functionalized MWCNT into commercially available EL-350 epoxy resin. Flexure, quasi-static compression and high strain rate (HSR) tests were performed with 0.1%, 0.2% and 0.3% of MWCNTs to observe variation in mechanical properties. The optimum loading was found at 0.2%. Nanocomposites with amine functionalized MWCNTs showed better properties compared to that with unmodified MWCNTs. Scanning electron microscopy (SEM) analysis was performed to confirm an improvement in dispersion with functionalization. Thermal properties were investigated by thermogravimetric analysis (TGA).  相似文献   

10.
Aligned multi-walled carbon nanotubes (MWCNTs) with high purity and bulk yield were achieved on a silicon substrate by an aerosol-assisted chemical vapor deposition. The introduction of specific amounts of water vapor played a key role in in situ controlling the purity and surface defects of the nanotubes. The morphology, surface quality and structure of MWCNTs were characterized by secondary and backscattered electron imaging in a field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). Crystallinity and defects of the MWCNTs’ were investigated by high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. In this work, water vapor was found to provide a weak oxidative environment, which enhanced and purified the MWCNTs’ growth. However, excessive water vapor would inhibit the MWCNTs growth with a poor surface quality. In addition, it has been found that the surface morphology of the CNTs can be modified intentionally through producing some surface defects by tuning the amount of the water vapor, which may offer more nucleation sites on the chemically inert CNT surface for various applications such as catalyst support.  相似文献   

11.
Rodlike thermotropic liquid crystalline polyester (TLCP) was synthesized from 4,4′-oxydibenzoyl chloride and resorcinol containing modified multi-walled carbon nanotubes (MWCNTs) by in situ high-temperature solution polymerization. The liquid crystalline properties and thermal stability of the resulted TLCP nanocomposites were characterized by XRD, DSC, TGA, SEM, POM, and optical analysis. The addition of small amount of MWCNTs into TLCP matrix could significantly improve the thermal stability. The mesophase temperature range of nanocomposites were widened and shifted to higher temperatures. This nanocomposite melting phase transition (Tm) value increases maximally to 38.4 °C compared with pure copolymer. Using the Horowits-Metzger kinetic method, the PE/M-0.5 gave the best performance in terms of the thermal stability. This result can be explained that the incorporation of MWCNTs into TLCP caused an interaction between TLCP and MWCNTs through π-π* conjugation.  相似文献   

12.
Cyclohexanol and xylene were used as carbon precursors, for synthesis of multiwall carbon nanotubes (MWCNTs) arrays in a CVD system at temperature of 750 °C, using nitrogen as carrier gas and ferrocene as catalyst. Different characterization methods were employed to compare the MWCNTs structure synthesized by these two precursors. All scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA) and Raman spectroscopy results illustrated that using cyclohexanol could significantly reduce formation of amorphous carbon and catalyst particles in the as-grown CNTs. The less amorphous carbon can be attributed to in situ oxidation in presence of oxygen atom of cyclohexanol. Characterizations showed that MWCNTs with high purity could be obtained using cyclohexanol as carbon precursor. The as-grown MWCNTs were purified by oxidation and acid treatment. Characterization of the purified MWCNTs using HNO3/H2SO4 (1/3 or 1/1), 8 M HCl or 8 M HNO3 was carried out. The results showed that 8 M HNO3 could be considered as the best chemical to obtain more pure MWCNTs, less amorphous and metal particles and less damaged MWCNTs. The Raman spectroscopy results demonstrated that HNO3/H2SO4 (1/3) treatment could more disorder the MWCNTs structure and this was attributed to the bigger destroying effect of this acid treatment. Furthermore, the TEM analysis of MWCNTs before and after acid treatment revealed that acid treatment could remove encapsulated catalyst particles. The FTIR analysis illustrated that purification of the MWCNTs with nitric acid could connect the functional groups onto the outer surface of MWCNTs and this resulted in more dispersion of the MWCNTs in water.  相似文献   

13.
Multi-scale hybrid composite laminates of epoxy/carbon fiber (CF) reinforced with multi-walled carbon nanotubes (MWCNTs) were fabricated in an autoclave. For laminate fabrication, 0.5 wt% of pristine MWCNTs or silane-functionalized MWNCTs (f-MWCNTs) were dispersed into a diglycidyl ether of bisphenol-A epoxy system and applied on the woven carbon fabric. The neat epoxy/CF composite and the MWCNTs-reinforced epoxy/CF hybrid composites were characterized by thermogravimetric analysis (TGA), thermomechanical analysis (TMA), tensile testing, and field emission scanning electron microscopy (FE-SEM). A significant improvement in initial decomposition temperature and glass transition temperature of epoxy/CF composite was observed when reinforced with 0.5 wt% of f-MWCNTs. The coefficient of thermal expansion (CTE), measured by TMA, diminished by 22% compared to the epoxy/CF composite, indicating an improvement in dimensional stability of the hybrid composite. No significant improvement in tensile properties of either MWCNTs/epoxy/CF composites was observed compared to those of the neat epoxy/CF composite.  相似文献   

14.
Raman spectroscopy, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy, and transmission electron microscopy are used to assess structural changes generated on the surface of multi-walled (MWCNTs) and single-walled (SWCNTs) carbon nanotubes. Different levels of structural modifications are generated by the use of acidic oxidative treatments. It is found that Raman spectroscopy is a very powerful technique to assess structural modification of SWCNTs with initial low defect concentration. For MWCNTs grown by chemical vapor deposition, which already contain a high density of structural defects in their as-produced state, Raman spectroscopy is not a very sensitive tool to detect the generation of further defects or other structural modifications introduced through acidic treatments. For this later case, TGA is a sensitive technique to assess structural modifications on the nanotubes.  相似文献   

15.
The thermal stability of multi-walled carbon nanotubes (MWCNTs) was assessed in situ by transmission electron microscopy. Upon heating, Ni catalysts in MWCNTs containing bamboo structures shrank from the tail due to evaporation, leading to additional bamboo formation and tube elongation at 800°C, while the MWCNTs with FeSi catalysts remained intact up to 1050°C except for better crystallinity. The physisorbed carbon and/or hydrocarbon on surfaces and super-saturated carbon in the Ni catalysts should be responsible for the phenomena.  相似文献   

16.
ABSTRACT

Carbon nanotubes (CNTs) are the carbon materials measured at nanoscale level and they are defined in two types according to the number of concentric layers, i.e. single-layer tube is single-walled nanotubes, while multi-layer tube structure is called multi-walled nanotubes. The green method synthesis for the preparation of CNTs begins with the smashing of legume seeds kala chana, and then they form complex with cobalt salt. Desiccation of the complex compound forms cobalt salt and seed protein. The complex is then decomposed at 625 ºC in muffle furnace for 20 min. Purification of the decomposed sample is done through acid wash treatment and dried in vacuum oven. The confirmations of CNTs are done by nuclear magnetic resonance and Fourier transform infrared, which analyzes the denatured protein, reacted to the metal salt. X-Ray diffraction determines the MWNTs with transmission electron microscope (TEM) reports the network structure of CNTs. thermal gravimetric analysis (TGA)–differential thermal analysis (DTA)–thermogravimetric analysis (DTG) tests the amount of sample under thermal treatment. Vibrating sample magnetometer determines the paramagnetic nature of CNTs. CNTs thus prepared can be used in mechanical fields, in solar cells, in electronics fields, etc. because of their multidisciplinary properties. The synthesized CNTs are eco-friendly in nature, prepared by the legume seed natural precursor.  相似文献   

17.
The origin of the low-frequency band (250–300 cm?1) in the Raman spectra of multi-walled carbon nanotubes (MWCNTs) produced by the CVD method has been studied. The studies performed by Raman spectroscopy, transmission electron microscopy, Auger spectroscopy, and X-ray photoelectron spectroscopy after chemical and thermal treatments allow the assumption that this band belongs to radial vibrations of carbon atoms in internal walls of MWCNTs.  相似文献   

18.
The properties of polymer matrix composites are related not only to the chemical composition of the materials but also to the processing equipment used for their preparation which has a direct influence on the microstructure of the composites. In this paper polypropylene (PP)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared by melt blending through a self-developed, eccentric rotor extruder (ERE). The structure and elongational deformation mechanism of an ERE were described in detail. The morphological, rheological, thermal and mechanical properties of the resulting PP/MWCNTs nanocomposites were investigated. Scanning electron microscopy (SEM) and rheological analysis showed that the MWCNTs were well dispersed in the PP matrix. The thermal stability was investigated by thermogravimetric analysis (TGA) and indicated that the addition of MWCNTs could effectively improve the thermal stability of pure PP. The percentage of crystallinity and tensile strength of the composites were improved as a result of the heterogeneous nucleation effect of the MWCNTs in the PP matrix. The research results revealed that the enhancement of the properties of PP/MWCNTs composites could be attributed to a better dispersion of the MWCNTs in the matrix as compared to samples prepared by conventional extrusion.  相似文献   

19.
Aluminum pillared and exchanged bentonite particles were synthesized by the ion exchange method. The characteristics of the particles were investigated by Fourier-transform infrared spectra (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), scanning electron microscope (SEM), electron dispersive X-ray spectrometer (EDS), reflectance spectrophotometer (RS) and electromagnetic transition instrument (ETI). FTIR spectra showed a successful incorporation of Al complexes into the clay interlayer. The TGA result demonstrated an improvement in thermal stability of the Al-pillared clay compared with the untreated particles. SEM and EDX results showed the presence of aluminum aggregates on the surface of clay. It was also found that Al ions affect electromagnetic properties of the clay particles.  相似文献   

20.
A new, facile, and mild approach was developed to cut the conventional long and entangled multiwalled carbon nanotubes (MWCNTs) to short and dispersed ones with length of less than 1 μm by ultrasonic-assisted chemical oxidation with ammonium persulfate (APS) in neutral aqueous solution at room temperature. The resulting products were characterized with Fourier transform infrared (FTIR), Raman, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and transmission electron microscope (TEM) techniques. The shortened MWCNTs formed stable dispersion state in water without the help of surfactants that provided possibility for further functionalizations and applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号