首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
We have described Stranski–Krastanow growth of multilayer In(Ga)As/GaAs QDs on Ge substrate by MBE. The growth technique includes deposition of a thin germanium buffer layer followed by migration-enhanced epitaxy (MEE) grown GaAs layer at 350°C. The MEE layer was overgrown by a thin low-temperature (475°C) grown GaAs layer with a subsequent deposition of a thick GaAs layer grown at 590°C. The sample was characterized by AFM, cross-sectional TEM and temperature-dependent PL measurements. The AFM shows dense formation of QDs with no undulation in the wetting layer. The XTEM image confirms that the sample is free from structural defects. The 8 K PL emission exhibits a 1051 nm peak, which is similar to the control sample consisting of In(Ga)As/GaAs QDs grown on GaAs substrate, but the observed emission intensity is lower. The similar slopes of Arrhenius plot of the integrated PL intensity for the as-grown QD sample grown on Ge substrate as well as for a reference QD sample grown on GaAs substrate are found to be identical, indicating a similar carrier emission process for both the samples. This in turn indicates coherent formation of QDs on Ge substrate. We presume due to the accumulated strain associated with the self-assembled growth of nanostructures on Ge that nonradiative recombination centers are introduced in the GaAs barrier in between the QD layers, which in turn degrades the overall optical quality of the sample.  相似文献   

2.
We have investigated the effect of post growth rapid thermal annealing on self-assembled InAs/GaAs multilayer QDs (MQD) overgrown with a combination barrier of InAlGaAs and GaAs for their possible use in photovoltaic device application. The samples were characterized by transmission electron microscopy and photoluminescence measurements. We noticed a thermally induced material interdiffusion between the QDs and the wetting layer in the MQD sample up to a certain annealing temperature. The QD heterostructure exhibited a thermal stability in the emission peak wavelength on annealing up to 700 °C temperature. A phenomenological model has been proposed for this stability of the emission peak. The model considers the effect of the strain field, propagating from the underlying QD layer to the upper layers of the multilayer QD and the effect of indium atom gradient in the combination barrier layer due to the presence of a quaternary InAlGaAs layer.  相似文献   

3.
The growth of a three-dimensional (3D) InAs quantum dot (QD) crystal on a patterned GaAs (0 0 1) substrate is demonstrated. The morphology of QDs grown on a surface patterned with shallow holes is studied as a function of the amount of deposited InAs. We observe that the QDs form in the patterned holes close to each other forming lateral QD bimolecules for InAs coverages below the commonly observed critical thickness of 1.6 monolayers. When the coverage increases, the QD bimolecules coalesce to form larger single QDs. The QDs in the holes are then capped with a Ga(Al)As spacer. The buried QD array serves as a strain template for controlling the formation site of the QDs in the second layer. By tuning the growth conditions for the second and subsequent layers, we achieve a 3D InAs QD crystal with a high degree of perfection. A detail investigation of the growth on hole patterns with different periodicities is presented.  相似文献   

4.
张伟  石震武  霍大云  郭小祥  彭长四 《物理学报》2016,65(11):117801-117801
在InAs/GaAs(001)量子点生长过程中, 当InAs沉积量为0.9 ML时, 利用紫外纳秒脉冲激光辐照浸润层表面, 由于高温下In原子的不稳定性, 激光诱导的原子脱附效应被放大, 样品表面出现了原子层移除和纳米孔. 原子力显微镜测试表明纳米孔呈现以[110]方向为长轴(尺寸: 20-50 nm)、[110]方向为短轴(尺寸: 15-40 nm)的表面椭圆开口形状, 孔的深度为0.5-3 nm. 纳米孔的密度与脉冲激光的能量密度正相关. 脉冲激光的辐照对量子点生长产生了显著的影响: 一方面由于纳米孔的表面自由能低, 沉积的InAs优先迁移到孔内, 纳米孔成为量子点优先成核的位置; 另一方面, 孔外的区域因为In原子的脱附, 量子点的成核被抑制. 由于带有纳米孔的浸润层表面具有类似于传统微纳加工技术制备的图形衬底对量子点选择性生长的功能, 该研究为量子点的可控生长提供了一种新的思路.  相似文献   

5.
Twofold stacked InGaAs/GaAs quantum dot (QD) layers are grown on GaAs(001) substrates patterned with square arrays of shallow holes. We study the surface morphology of the second InGaAs QD layer as a function of pattern periodicity. Comparing our experimental results with a realistic simulation of the strain energy density E(str) distribution, we find that the second InGaAs QD layer sensitively responds to the lateral strain-field interferences generated by the buried periodic QD array. This response includes the well-known formation of vertically aligned QDs but also the occurrence of QDs on satellite strain energy density minima. Our calculations show that base size and shape as well as lateral orientation of both QD types are predefined by the E(str) distribution on the underlying surface.  相似文献   

6.
We describe fabrication methods of GaAs and InAs quantum dot (QD) structures and related semiconductor nanostructures having nanoscale heterointerfaces grown by the selective area metalorganic vapor-phase epitaxial (SA-MOVPE) method on partially masked GaAs substrates. GaAs QD arrays and wire–dot coupled structures having strong lateral confinement were fabricated on appropriately designed masked substrates. InAs QDs were also formed on various kinds of GaAs pyramidal and wire structures, where site-selective formation is demonstrated by the combination of self-assembling growth mode and selective area growth. The application of QDs to single-electron transistors using SA-MOVPE is also described.  相似文献   

7.
尚向军  马奔  陈泽升  喻颖  查国伟  倪海桥  牛智川 《物理学报》2018,67(22):227801-227801
介绍了自组织量子点单光子发光机理及器件研究进展.主要内容包括:半导体液滴自催化外延GaAs纳米线中InAs量子点和GaAs量子点的单光子发光效应、自组织InAs/GaAs量子点与分布布拉格平面微腔耦合结构的单光子发光效应和器件制备,单量子点发光的共振荧光测量方法、量子点单光子参量下转换实现的纠缠光子发射、单光子的量子存储效应以及量子点单光子发光的光纤耦合输出芯片制备等.  相似文献   

8.
We investigate the effects of a thin AlAs layer with different position and thickness on the optical properties of InAs quantum dots (QDs) by using transmission electron microscopy and photoluminescence (PL). The energy level shift of InAs QD samples is observed by introducing the thin AlAs layer without any significant loss of the QD qualities. The emission peak from InAs QDs directly grown on the 4 monolayer (ML) AlAs layer is blueshifted from that of reference sample by 219 meV with a little increase in FWHM from 42–47 meV for ground state. In contrast, InAs QDs grown under the 4 ML AlAs layer have PL peak a little redshifted to lower energy by 17 meV. This result is related to the interdiffusion of Al atom at the InAs QDs caused by the annealing effect during growing of InAs QDs on AlAs layer.  相似文献   

9.
We have obtained high-density (>1011/cm2) InAs quantum dot (QD) structures by using an Al(Ga)As matrix layer. With increase of the AlAs matrix layer thickness, the density of QDs increases a little and the luminescence intensity emitted from InAs QDs decreases. We have used a thin GaAs insertion layer (IL) for the reason of keeping InAs QDs from an aluminum intermixing towards QDs. As the thickness of GaAs IL increases, the density of QDs decreases slightly due to the reduction of the roughness of an AlAs matrix layer. However, the luminescence intensity increases with increase in the thickness of GaAs IL resulting from the efficient blocking of an aluminum intermixing towards QDs.  相似文献   

10.
The intermixing of Sb and As atoms induced by rapid thermal annealing (RTA) was investigated for type II GaSb/GaAs self-assembled quantum dots (QD) formed by molecular beam epitaxy growth. Just as in InAs/GaAs QD systems, the intermixing induces a remarkable blueshift of the photoluminescence (PL) peak of QDs and reduces the inhomogeneous broadening of PL peaks for both QD ensemble and wetting layer (WL) as consequences of the weakening of quantum confinement. Contrary to InAs/GaAs QDs systems, however, the intermixing has led to a pronounced exponential increase in PL intensity for GaSb QDs with annealing temperature up to 875 °C. By analyzing the temperature dependence of PL for QDs annealed at 700, 750 and 800 °C, activation energies of PL quenching from QDs at high temperatures are 176.4, 146 and 73.9 meV. The decrease of QD activation energy with annealing temperatures indicates the reduction of hole localization energy in type II QDs due to the Sb/As intermixing. The activation energy for the WL PL was found to drastically decrease when annealed at 800 °C where the QD PL intensity surpassed WL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号