首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
介绍了240mm×180mm矩形口径离轴双曲面反射镜的加工与检测。提出了一种通过配块把矩形镜拼接成母镜来实现离轴镜加工的方法。完成了最佳比较球面和最大非球面度等工艺参数的计算。抛光阶段的非球面检测采用零位补偿法,其中零位补偿器是补偿检验中的关键元件。该离轴双曲面镜的最终面形RMS达到了0.02λ,满足了设计要求。  相似文献   

2.
为了检测极大口径望远镜非球面离轴子镜的面形精度,设计一种通用的干涉检测光路。综合利用透射式和衍射式补偿器的优点,设计消球差单透镜和计算全息片共同对非球面度进行补偿。对于大口径、批量化的离轴非球面镜,搭建一个检验光路,检测不同离轴量的子镜时只需更换计算全息片,最大程度上节约成本。设计结果表明对于顶点曲率半径60 m、二次常数K=-1.000954、母镜口径Φ30 m、子镜口径Φ1.5 m、离轴量分别为2.5、8、14.5 m的子镜,均可以在一种光路结构中实现高精度零位检测。  相似文献   

3.
结合奥夫纳尔折射式零位补偿器和马克苏托夫反射式零位补偿器的优点,对大口径、大相对孔径凹非球面加工检验提出一种折反射式零位补偿检验法.该方法采用放置在非球面顶点曲率中心之前的两块透镜和一块反射镜来实现大口径凹非球面零位补偿检验.依据三级像差理论,推导了初始结构计算公式;通过对口径为1 000mm、顶点曲率半径为4 000mm、偏心率为1.05、中心孔为200mm的凹非球面进行补偿器设计,完成了原理验证,优化后系统剩余波像差峰谷值为0.004 2λ.研究结果表明该方法轴向光路长度短,补偿能力强,可用于允许部分中心遮拦的大口径、大相对孔径凹非球面检验.  相似文献   

4.
针对快焦比特大非球面度离轴非球面反射镜,设计了3片式Offner补偿器。为应对3片式补偿器对中心偏差及镜间隔严格的公差要求,设计了相应的补偿器镜筒结构。该结构使透镜中心倾斜及平移调整相分离,实现补偿器的高精度装调。根据中心偏差测量仪的测量结果,2片补偿镜之间倾斜误差4.4″,平移误差3.5 μm, 镜间隔误差3.8 μm;补偿镜组与场镜之间倾斜误差5.3″,平移误差4.2 μm, 镜间隔误差7.2 μm,满足检测使用要求。利用该补偿器及4D动态干涉仪对精抛光阶段的离轴非球面进行检测,面形结果PVq值达到0.135λ,RMS值达到0.019 5λ,优于设计要求。  相似文献   

5.
本文提出了一种改良的检测方法用于实现对超大口径凸非球面反射镜进行高精度的面形检测。该方法利用计算机再现全息和照明透镜混合补偿,实现对超大口径凸非球面的高精度检测。首先,对该方法的基本原理进行了分析和研究;然后,以一块口径为800 mm的超大口径凸非球面为例,进行了子孔径规划和检测光路中相关光学元件的设计;最后,以中心子孔径为例,系统分析了该检测装置的敏感度。仿真实验结果表明:计算全息补偿器的设计残差均方根值小于0. 001 3 nm,该检测系统的综合检测精度可以优于6 nm RMS。结果表明该检测系统满足超大口径凸非球面反射镜高精度面形检测的要求。  相似文献   

6.
光学自由曲面元件如离轴非球面等在现代光学系统中起到了越来越重要的作用。计算全息元件(CGH)可产生任意形状的波前,能够很好地应用在光学自由曲面的零位补偿干涉测量中。针对一离轴椭球面为测量样品,以光学计量领域比较成熟的Offner补偿器法,测量离轴非球面母镜的面形偏差,进而获得离轴椭球面的面形偏差;再将离轴椭球面通过旋转平移,作为自由曲面元件,在平面基板上设计CGH对其进行零位补偿测量,研究零位补偿CGH的误差传递数据。通过主要原理误差分析与计算,在光学熔石英平面基底上制作零位补偿CGH,测量不确定度达到λ/10[峰谷(PV)值,λ=0.6328μm],满足光学自由曲面元件的高精度检测要求。  相似文献   

7.
非球面碳化硅反射镜的加工与检测   总被引:1,自引:0,他引:1       下载免费PDF全文
为了获得高精度非球面碳化硅(SiC)反射镜,对非球面碳化硅反射镜基底以及改性后碳化硅反射镜表面的加工与检测技术进行了研究。介绍了非球面计算机控制光学表面成型(CCOS)技术及FSGJ-2非球面数控加工设备。采用轮廓检测法和零位补偿干涉检测法分别对碳化硅反射镜研磨和抛光阶段的面形精度进行了检测,并采用零位补偿干涉检测法及表面粗糙度测量仪对最终加工完毕的碳化硅反射镜的面形精度和表面粗糙度进行检测。测量结果表明:各项技术指标均满足设计要求,其中非球面碳化硅(SiC)反射镜实际使用口径内的面形精度(RMS值)为0.016λ(λ=0.6328μm),表面粗糙度(RMS值)为0.85nm。  相似文献   

8.
矩形口径离轴非球面在数控加工过程中的检测   总被引:2,自引:2,他引:0  
介绍了空间相机中的离轴非球面第三反射镜 (矩形口径 )在数控加工过程中在研磨和抛光阶段的检测情况。利用自行研制的非球面测量机对研磨阶段离轴非球面的面形精度进行了测量 ,其最后的研磨精度达到了 1 μm(RMS)。抛光阶段离轴非球面的检测采用的是补偿法 ,其中零位补偿器是补偿检验的关键元件。该离轴非球面的最终面形达到了在 2 0 0mm通光口径内约λ/30的精度 (λ=0 .632 8μm)。  相似文献   

9.
离轴非球面反射镜补偿检验的计算机辅助装调技术研究   总被引:2,自引:1,他引:1  
利用零补偿器实施离轴非球面元件面形的干涉检测中,为了实现反射镜的高准确度检测,对其干涉结果中的误差信息进行了分析.根据零补偿器的补偿原理,提出一种新的调整误差分离方法,建立了离轴非球面补偿检验的调整误差分离模型,并利用该模型对一块离轴非球面反射镜进行了仿真实验.调整前由调整误差引入的波像差为0.2332λRMS(λ=632.8nm),根据仿真结果调整后的波像差为0.0026λRMS,表明该方法具有较高的准确度,可有效提高检测效率.  相似文献   

10.
为了实现大口径、长焦距、批量化离轴镜面的高精度面形检验,本文提出了一种零位反衍补偿检测方案,采用计算全息和球面反射镜共同对离轴镜面法向像差进行补偿,检测光路波像差残差接近于零。检测方案为非轴对称离轴结构,设计了相应的全息对准光路,以保证检测光路装调切实可行。不同离轴量子镜检测光路参数完全一致,仅需更换相应位置计算全息片、调整待测镜空间姿态,即可实现不同类型镜面的快速批量化检验。误差分析结果表明,由补偿元件制造误差、光路失调、干涉仪面形测量重复性以及干涉仪标准球面波偏差引起的待测镜面形误差小于λ/40 (RMS值,λ=632.8 nm)。  相似文献   

11.
为实现高次非球面的高精度检测与确定性加工,从高次非球面检测的零位补偿器设计和干涉检测图的投影畸变校正两方面出发提出了具体的解决方案。首先,基于三级像差理论与PW法推导了高次非球面三片式补偿器初始结构参数计算公式。针对有效口径314 mm、F/0.78的8阶偶次非球面,将基于公式获得的初始结构参数代入光学设计软件进行缩放、优化后获得PV=0.009 6λ、RMS=0.001 2λ(λ=632.8 nm)的补偿器设计结果,公差分析结果表明此设计满足高次非球面λ/50的检测精度要求。进一步地,针对基于零位补偿器的干涉检测图存在畸变的问题提出了一种校正方法,该方法采用零位补偿器的成像畸曲线数据确定干涉图的畸变规律,利用畸变零点求解算法确定畸变中心,结合畸变规律与畸变中心点坐标进行逆向求解实现干涉检测图畸变的快速校正。采用本文所提方法对零位补偿检测结果进行畸变校正,基于畸变校正结果对非球面进行了6次磁流变抛光后,面形RMS由0.270λ收敛至0.019λ,验证了该畸变校正方法的有效性。  相似文献   

12.
凸非球面,尤其是离轴凸非球面的光学检验一直是非球面加工中的难点。针对离轴凸非球面光学元件加工检验困难的问题,研究了一种改进的Hindle方法,解决了经典的透射式Hindle方法需要大口径辅助弯月透镜等不足。针对大口径离轴凸非球面的检测,设计了一个特殊结构的补偿器组,并对补偿器的加工和装调进行分析、仿真和优化,对整个补偿检测系统进行公差分析,并给出了相应的结果,同时也可以把此设计推广到更大口径的离轴凸非球面镜的面形检测中去。  相似文献   

13.
为了实现大口径凸非球面的高准确度检测,提出了凸非球面背向零位补偿检验方法.该方法在非球面背面引入辅助球面并在光路中加入球面补偿透镜来达到零位补偿检验.辅助球面既可以使凸非球面等效为凹非球面,还可以补偿部分非球面法线像差.依据三级像差理论,对辅助球面曲率半径及补偿透镜结构参量进行初始结构求解,并编写了求解初始结构软件,再利用光学设计软件对初始结构进行优化,优化结果满足设计要求,使凸非球面背向零位补偿检验理论化.在实际应用中,以Φ120mm凸非球面为例设计了凸非球面背向零位补偿检测系统,检测系统设计的剩余波像差PV为0.024λ、RMS为0.007λ.利用此检测方法加工完成后的凸非球面的面形准确度优于λ/40.  相似文献   

14.
计算机产生全息图对补偿器检测的技术研究   总被引:3,自引:2,他引:1  
用一种计算全息板代替补偿器零检验光路中理想的大型非球面,实现对补偿器的定量检验.用于检测补偿器旋转对称的二元反射式全息板根据非球面方程设计,并确定其光程差,再由激光直写(精度可达0.6μm)来制作完成,合成相当于理想非球面反射波前.其检测精度小于λ/10.补偿器的参量由抛物面和三级球差理论确定.  相似文献   

15.
为了标定利用补偿器检测非球面的精度,提出采用倾斜计算全息法(CGH)校验补偿器,并将补偿器精度提高。介绍补偿器检测离轴非球面基本原理,同时结合工程实例,设计补偿器检测860 mm×600 mm的离轴高次非球面,通过加工与装配,仿真分析出装配后的补偿器精度为2.91 nm[均方根(RMS)值]。设计了利用倾斜式的计算全息板检测该补偿器的实验,并分析出利用该CGH校验补偿器的精度为1.79 nm(RMS值)。结果表明,受限于补偿器光学元件加工和组装精度,其检测精度未知,通过对补偿器误差进行检测与标定,可以确定利用该补偿器检测非球面的可行性并将其精度提高。  相似文献   

16.
为了标定利用补偿器检测非球面的精度,提出采用倾斜计算全息法(CGH)校验补偿器,并将补偿器精度提高。介绍补偿器检测离轴非球面基本原理,同时结合工程实例,设计补偿器检测860 mm×600 mm的离轴高次非球面,通过加工与装配,仿真分析出装配后的补偿器精度为2.91 nm[均方根(RMS)值]。设计了利用倾斜式的计算全息板检测该补偿器的实验,并分析出利用该CGH校验补偿器的精度为1.79 nm(RMS值)。结果表明,受限于补偿器光学元件加工和组装精度,其检测精度未知,通过对补偿器误差进行检测与标定,可以确定利用该补偿器检测非球面的可行性并将其精度提高。  相似文献   

17.
宋淑梅 《中国光学》2014,7(6):975-981
介绍了一种轻质矩形离轴非球面反射镜的加工与检测方法.针对矩形离轴非球面镜这种直角效应的加工难点,提出双摆式加工工艺,并设计改造双摆式加工机床使该方法得以实现.采用该方法加工完成某多光谱仪光学系统中4块矩形离轴非球面反射镜(其中最大尺寸为266 mm×110 mm),最终加工得到的面形精度均优于0.020λ(RMS, @633 mm)的设计指标要求.加工结果表明,用该加工技术既提高了光学加工效率又利于得到较为平滑的面形质量.  相似文献   

18.
非球面数字波面检测技术   总被引:1,自引:1,他引:0       下载免费PDF全文
袁吕军  杨帆 《应用光学》2012,33(6):1118-1122
提出了一种快速检测浅度非球面(非球面度小于0.01 mm)的方法,该方法无需补偿器或其他辅助光学元件进行零位补偿。用移相干涉仪直接测量正轴或离轴的浅度凹非球面,剔除平移、倾斜、失焦等调整误差后,得到实际被测镜面的面形分布数据;根据正轴或离轴的浅度凹非球面矢高方程计算理想非球面的面形分布数据,得到理论波面数据,用实测的面形分布数据减去理论的面形分布数据即可得到被检非球面的剩余波像差,即面形误差。利用该方法测量了一口径为135 mm的双曲面,并用零位补偿法加以验证。两种方法的检测结果精度相当,说明数字波面法可实际应用于正轴或离轴的浅度凹非球面的检测。  相似文献   

19.
介绍一块Ф1300mmULE材料非球面反射镜的加工与检测方法。采用非球面超声铣磨、机器人研抛等多个工序组合加工技术完成了非球面反射镜的加工。在非球面检测中,采用大口径三坐标测量的方法进行了研磨阶段的面形检测,通过Z向滤波的方法对面形拟合过程中的噪点误差进行了处理,将研磨阶段的面形精度提高至5μm PV值。在干涉仪测量阶段,采用气囊支撑方法对反射镜的重力误差进行了卸载,通过非线性误差矫正的方法去除了零位补偿检测所带来的非线性误差,反射镜的最终精度达到0.016λRMS。试验结果表明,大口径非球面反射镜各项技术指标均满足设计要求,所用工艺方法适用于加工更大口径的非球面反射镜及其他类型的大口径非球面光学元件。  相似文献   

20.
曲贺盟  张新  王灵杰  张继真 《光学学报》2014,34(2):222001-215
椭球形窗口的检测技术严重阻碍其成功应用。首先简要介绍了目前普遍使用的非球面检测技术,并针对椭球形窗口大倾斜、大偏心、深非球面的特点,基于零位补偿检测法原理,设计了一种适合椭球形窗口检测的改进型Offner零位补偿检测系统。检测系统包括补偿镜、场镜和标准球面参考镜,检测系统工作原理为:干涉仪出射平行光线通过补偿镜及场镜产生修正波前,通过椭球形窗口照射到标准球面反射镜,并按原光路返回与参考光线干涉,其干涉结果显示出椭球形窗口的面形偏差。实现了对椭球形窗口的高精度全口径一次检测并给出了完整的设计结果。检测了长径比为1.0,口径为110mm的椭球形窗口,其波前残余波像差均方根值为0.0052λ。设计结果为实际使用提供了一定的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号