首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
运用分子动力学方法模拟研究了旋转的黑磷纳米管对管内水流的轴向驱动特性,研究结果表明:手性黑磷纳米管在旋转时会驱动管内水分子沿轴向运动,运动方向由纳米管转向决定;管内水流的流速和驱动力会随着黑磷管转速的提高而增大.采用黑磷双壁Couette模型计算分析了水-黑磷界面的摩擦系数及滑移特性,阐明了黑磷表面天然的各向异性微结构是旋转黑磷管轴向驱动水流的本质原因.构建了在双层黑磷纳米管间填充水分子的模型,发现内外黑磷管同时旋转时,管间水分子的轴向运动会增强.纳米管半径也会对水分子的定向运动产生影响,具体表现为在相同转速下,随着纳米管半径的增大,管内水分子在轴向上的运动速度会减小,而受力则会增大;双壁黑磷纳米管在旋转时管内水分子的轴向运动情况和单壁黑磷纳米管模型差异很小,证明黑磷管层数对水流驱动效果的影响不明显;温度对水流驱动效果的影响规律取决于管内压强和温度对流固界面摩擦系数的耦合作用,当温度低于常温时水分子在轴向上的速度和受力会随着温度的升高而增大,当温度达到常温时则趋于平稳.研究结果可为基于黑磷纳米管的流体传动器件的设计和应用提供理论基础.  相似文献   

2.
纳米孔隙内气体流动的理论预测对气体微流控器件的设计和制造具有重要的理论指导作用,文章采用分子动力学方法研究了氮气、氧气和二氧化碳混合气体在平行壁纳米孔隙内的剪切流动特性和边界滑移特性.研究结果表明:随着加入二氧化碳比例的不断增加,混合气体滑移速度不断增大,并且当二氧化碳的比例低于20%时,混合气体流动速度沿孔隙宽度方向呈线性分布;而当比例达到40%后,其速度轮廓将呈现非线性趋势.当二氧化碳所占比例为20%时,随着孔隙宽度的增加,混合气体的整体边界滑移随之减小.探究了混合气体密度和气-固耦合强度对混合气体流动及边界滑移的影响机理.发现随着混合气体密度的减小,气流边界滑移增大;随着气-固界面耦合强度的增强,边界气体分子易被吸附而出现黏滑运动,气体分子在边界处的积聚现象增强,剪切应变率增大,边界滑移减小.   相似文献   

3.
纳米尺度固–液相传热过程中界面处存在温度阶跃现象。本文采用分子动力学方法分析宽度为3.44~14.69 nm通道内固–液界面温度阶跃变化规律与水能量输运特性。模拟结果表明,随纳米通道宽度的增加,固–液界面处的温度阶跃与界面热阻降低。此外,纳米通道内水液膜的能量输运具有尺度效应,随着纳米通道宽度增加,液相水分子间作用势能降低,水分子均方位移与扩散系数增加,水液膜的导热系数升高。  相似文献   

4.
王胜  徐进良  张龙艳 《物理学报》2017,66(20):204704-204704
采用分子动力学方法研究了流体在非对称浸润性粗糙纳米通道内的流动与传热过程,分析了两侧壁面浸润性不对称对流体速度滑移和温度阶跃的影响,以及非对称浸润性组合对流体内部热量传递的影响.研究结果表明,纳米通道主流区域的流体速度在外力作用下呈抛物线分布,但是纳米通道上下壁面浸润性不对称导致速度分布不呈中心对称,同时通道壁面的纳米结构也会限制流体的流动.流体在流动过程中产生黏性耗散,使流体温度升高.增强冷壁面的疏水性对近热壁面区域的流体速度几乎没有影响,滑移速度和滑移长度基本不变,始终为锁定边界,但是会导致近冷壁面区域的流体速度逐渐增大,对应的滑移速度和滑移长度随之增大.此时,近冷壁面区域的流体温度逐渐超过近热壁面区域的流体温度,流体出现反转温度分布,流体内部热流逆向传递.随着两侧壁面浸润性不对称程度增加,流体反转温度分布更加明显.  相似文献   

5.
梅涛  陈占秀  杨历  王坤  苗瑞灿 《物理学报》2019,68(9):94701-094701
纳米流动系统具有高效、经济等优势,在众多领域具有广泛的应用前景.因该类系统具有极高的表面积体积比,致使界面滑移效应对流动具有显著影响.本文采用分子动力学方法以两无限大平行非对称壁面组成的Poiseuille流动为对象,分析了壁面粗糙度与润湿性变化对通道内流体流动的影响.对于不同结构类型的壁面,需要通过水动力位置来确定固液界面位置,准确计算固液界面位置有助于更好地分析界面滑移效应.研究结果表明,上下壁面不对称会引起通道内流场参数分布的不对称,壁面粗糙度及润湿性的变化会影响近壁面附近流体原子的流动特性,由于壁面凹槽的存在,粗糙壁面附近的数密度分布低于光滑壁面一侧.壁面粗糙度及润湿性的变化会影响固液界面位置,肋高变化及壁面润湿性对通道中速度分布影响较大,界面滑移速度及滑移长度随肋高和润湿性的增大而减小;肋间距变化对通道内流体流动影响较小,界面滑移速度和滑移长度基本保持恒定.  相似文献   

6.
张程宾  许兆林  陈永平 《物理学报》2014,63(21):214706-214706
为研究粗糙表面对纳尺度流体流动和传热及其流固界面速度滑移与温度阶跃的影响,本文建立了粗糙纳通道内流体流动和传热耦合过程的分子动力学模型,模拟研究了粗糙通道内流体的微观结构、速度和温度分布、速度滑移和温度阶跃并与光滑通道进行了比较,并分析了固液相互作用强度和壁面刚度对界面处速度滑移和温度阶跃的影响规律. 研究结果表明,在外力作用下,纳通道主流区域的速度分布呈抛物线分布,由于流体流动导致的黏性耗散使得纳通道内的温度分布呈四次方分布. 并且,在固体壁面处存在速度滑移与温度阶跃. 表面粗糙度的存在使得流体剪切流动产生了额外的黏性耗散,使得粗糙纳通道内的流体速度水平小于光滑通道,温度水平高于光滑通道,并且粗糙表面的速度滑移与温度阶跃均小于光滑通道. 另外,固液相互作用强度的增大和壁面刚度的减小均可导致界面处速度滑移和温度阶跃程度降低. 关键词: 速度滑移 温度阶跃 流固界面 粗糙度  相似文献   

7.
FV-MD耦合算法在微通道流动研究中的应用   总被引:1,自引:0,他引:1  
本文采用有限容积(FV)-分子动力学(MD)耦合算法对微通道内的液体流动进行了模拟研究.分析了通道宽度以及流固作用势强度对流体流动形式和壁面滑移速度的影响.结果显示:通道宽度减小与流固作用势的减弱都会使速度分布与宏观尺度下的分析解出现更大偏离,滑移速度与滑移长度明显增加.对于流体为液体氩,壁面为金属铂的工况条件,当通道宽度超过约0.6μm时,滑移速度不足最大流速的0.5%,滑移长度不足通道宽度的0.2%.  相似文献   

8.
本文采用分子动力学(MD)方法对流体流过单个纳米尺度孔的过程进行数值模拟。纳米尺度孔是由两块平行的三氧化二铝平板构成的。通过对孔内每个水分子施加均匀的外力来驱动流体流动。分子之间的相互作用都采用12-6 L-J势能模型来描述。本文数值模拟了流体输运的孔尺度效应,分析了孔尺度对壁面速度是否存在滑移的影响,讨论了驱动力和通道尺度对滑移速度和壁面动力黏性系数的影响,模拟发现存在一临界尺度,它决定了是否存在滑移,还发现特定尺度下存在一临界驱动力,它决定了等效黏度的非牛顿流体特征。  相似文献   

9.
采用分子动力学与有限容积法多尺度耦合算法对粗糙微通道内的液体Poiseuille流动进行了模拟。分析了粗糙元高度、分布以及几何形状对通道内流动速度和边界滑移长度的影响。结果表明:随着粗糙元高度的增加,流动速度和粗糙元间隙底部壁面上滑移长度均减小;粗糙元分布越密或不同几何形状粗糙元所对应的固壁原子数越多,滑移长度越小,但...  相似文献   

10.
本文基于离散速度方向模型,数值研究了过渡领域内气体在正弦波纹通道中的流动特性。首先,对模型的控制方程进行了坐标转换,提出了分子在曲边边界上的反射处理方法,将原模型计算范围拓展到了不规则区域。基于此,采用结构化网格和二阶迎风格式对正弦波纹通道内处于过渡领域的气体流动进行了数值研究。结果表明,与连续介质领域和滑移领域不同,过渡领域内通道截面最大速度在Kn=1附近出现极小值;随着Kn数的增加,壁面滑移速度随之增加,而摩擦常数随之降低;此外,通道的渐扩过程滑移速度以及摩擦常数均降低,渐缩过程与此相反。  相似文献   

11.
纳米通道内气体剪切流动的分子动力学模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
张冉  谢文佳  常青  李桦 《物理学报》2018,67(8):84701-084701
采用分子动力学模拟方法研究了表面力场对纳米通道内气体剪切流动的影响规律.结果显示通道内的气体流动分为两个区域:受壁面力场影响的近壁区域和不受壁面力场影响的主流区域.近壁区域内,气体流动特性和气体动力学理论预测差别很大,密度和速度急剧增大并出现峰值,正应力变化剧烈且各向异性,剪切应力在距壁面一个分子直径处出现突变.主流区域的气体流动特性与气体动力学理论预测相符合,该区域内的密度、正应力与剪切应力均为恒定值,速度分布亦符合应力-应变的线性响应关系.不同通道高度及密度下,近壁区域的归一化密度、速度及应力分布一致,表明近壁区域的气体流动特性仅由壁面力场所决定.随着壁面对气体分子势能作用的增强,气体分子在近壁区域的密度和速度随之增大,直至形成吸附层,导致速度滑移消失.通过剪切应力与切向动量适应系数(TMAC)的关系,得到不同壁面势能作用下的TMAC值,结果表明壁面对气体分子的势能作用越强,气体分子越容易在壁面发生漫反射.  相似文献   

12.
针对双尺度结构表面疏油特性的优异性,采用分子动力学的方法建立油液流体正十六烷烃分子模型,研究双尺度结构壁面润湿性影响下的纳米通道内流体的流动特性,通过对通道壁面亲疏油性下的双尺度结构的构建,与光滑壁面和单尺度壁面进行比较来探究双尺度纳米通道表面结构影响下油液流体在纳米通道内密度分布、速度分布、速度滑移和滑移长度的影响.模拟结果表明:对于亲油通道壁面,双尺度结构壁面亲油性明显加强,主流区域流体密度、流体速度和速度滑移都减小,甚至出现负滑移;而对于疏油通道壁面,双尺度分层结构能加强壁面的疏油性,通道内壁面形成稳定的气层使流体主流区域的密度增大,并且通道内流体的速度、速度滑移和滑移长度明显大于光滑和单尺度结构壁面.因此,纳米通道内双尺度结构能改变通道壁面的润湿性,并且能够加强流体在纳米疏油通道内的滑移减阻效应,为纳米通道内油液运输以及润滑薄膜减阻提供了设计基础.  相似文献   

13.
随机粗糙微通道内流动特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
闫寒  张文明  胡开明  刘岩  孟光 《物理学报》2013,62(17):174701-174701
采用计算流体动力学的方法, 研究了微通道内气体在速度滑移和随机表面粗糙度耦合作用下的流动特性. 其中, 利用二阶速度滑移边界条件描述气体的边界滑移, 利用分形几何学建立随机粗糙表面. 研究发现, 综合考虑二阶速度滑移边界条件和随机表面粗糙度在较大的平均Knudsen数范围内 (0.025-0.59) 得到的计算结果与实验数据符合得很好, 而一阶速度滑移边界条件只在平均Knudsen数较小时(<0.1)符合实验结果. 随机表面粗糙度对气体在边界处的滑移有显著影响, 相对粗糙度越大, 速度滑移系数越小. 并针对计算结果, 给出了滑移系数与相对粗糙度近似满足的关系. 随机粗糙表面对气体流动过程中的压强、速度、Poiseuille数也有显著影响. 关键词: 随机表面粗糙度 二阶速度滑移边界条件 分形 微通道  相似文献   

14.
利用分子动力学方法模拟流体在两无限大平板间剪切流动过程。研究通道内加入不同体积分数纳米颗粒、体积分数相同纳米颗粒数目不同以及剪切速度对流体密度、速度以及界面滑移的影响。结果表明:近壁区流体数密度呈衰减振荡分布,由近壁区到主流区振幅逐渐减小,颗粒和流体的整体数密度在中心主流区呈抛物线分布。流体剪切应变率随颗粒体积分数的增加逐渐减小,同时剪切应变率和滑移速度之间呈近似线性分布。体积分数相同颗粒数目不同,颗粒在运动过程中呈线,性排列时,剪切应变率最大。随剪切速度的增加,流体滑移速度和滑移长度随之增大,但滑移长度增加量相对较小。  相似文献   

15.
本文对几种不同几何模型的低波纹通道进行了传热及阻力性能数值研究,在一定的流速范围内得出了传热和阻力的特性曲线.分析了通道高度、波纹波峰高度、通道宽度对流动与换热的影响.结果表明,通道高度越小,换热越强,同时压降也增加;波纹波峰高度越大,换热加强,压降也相应增加;通道宽度越大,换热几乎不变,但压降随之降低.  相似文献   

16.
基于扩展Young-Laplace方程和动力学理论研究微通道中蒸发薄液膜区固液界面附近流动和传热特性,考虑压力特征、壁面滑移和温度跳跃建立物理模型.利用边界层近似,提出一种计算固液界面吸附微液层热阻的方法,导得固液界面的热阻和温度.数值模拟结果表明,壁面微流动会降低毛细压力梯度,增加壁面热阻,降低液相过热度,恶化液膜铺展和传热性能,在薄液膜区不可忽略.阐明壁面微流动含义,指出滑移系数与吸附流动微液层厚度的关系.  相似文献   

17.
纳米通道内液体流动的分子动力学研究   总被引:2,自引:0,他引:2  
本文采用分子动力学方法模拟液体在定截面及变截面纳米通道内的三维Poiseuille流动,研究液体浸润性及通道截面变化对纳米通道内液体流动的影响.研究结果表明:液体对壁面不湿润时,壁面处有速度滑移存在,并且随接触角的增大而增大,液体对壁面湿润则不存在速度滑移;同时,摩擦阻力系数随接触角的减小而增大.通道截面形状的变化对流场的影响随着远离变截面位置而迅速减弱,对流体通道平直处的流体速度相对值分布影响不大,对摩擦阻力系数影响较大.  相似文献   

18.
温度对纳米通道内流体的流动有显著的作用。运用分子动力学方法,模拟了不同温度下气体混合物在纳米通道内的Poiseuille流动。结果表明:气体混合物化学成分和物理结构都是非均匀的,固壁附近亲水粒子密度随着温度的升高而降低,疏水粒子随着温度的升高逐渐能够到达固壁附近。纳米通道内混合气体在温度较低时有明显的分层现象,而随着温度的升高,密度分布趋于一致。同时在固体壁面从温度较低时的无表观滑移到表观滑移速度随着温度的升高而逐渐增大,而在通道中心混合气体的流动速度随着温度的升高而降低。  相似文献   

19.
唐琬婷  肖时芳  孙学贵  胡望宇  邓辉球 《物理学报》2016,65(10):104705-104705
本文采用分子动力学方法模拟了液态锂在铜的微通道内的流动行为. 通过构建铜(111), (100)和(110)晶面的微通道内壁, 研究了液态锂在流固界面上的微观结构以及在铜微通道中的流动速度分布情况, 并探讨了微通道尺寸对液态锂流动行为的影响. 研究结果表明铜微通道内的液态锂在靠近铜固体壁附近区域呈有序的层状结构分布, 并受铜内壁晶面微观结构的影响. 铜(111)和(100)面内壁附近的液态锂有序层分布结构更明显. 外驱力作用下的液态锂在微通道内的流动速度呈抛物线分布, 流固界面和流动方向对液态锂的流动速度都会产生影响. 液态锂在铜(111)面内壁上流动的速度最大, 且出现了速度滑移; 在铜(110)面内壁上流动速度最小. 通过对不同尺寸的微通道内液态锂流动行为的研究, 发现流动速度的大小随着微通道尺寸的增加而增大, 且最大速度与微通道尺寸呈二次函数关系, 与有关理论计算结果符合得很好.  相似文献   

20.
纳米通道内液体流动的滑移现象   总被引:8,自引:0,他引:8       下载免费PDF全文
曹炳阳  陈民  过增元 《物理学报》2006,55(10):5305-5310
采用分子动力学模拟方法研究了液态氩在铂纳米通道内的流动,通过改变流体和壁面之间的势能作用获得了流体和通道表面之间浸润性质不同时的滑移现象. 研究发现:液体分子在亲水性通道表面附近呈类固体性质,数密度和有序性较大,而在疏水性表面附近的平均数密度降低,形成一个低密度层;液体流动在固体表面的速度滑移随着液体与表面势能作用的增强而减小,当液体和表面的浸润性不同时可以发生滑移、表观无滑移和负滑移现象;液体在固体表面的表观滑移是液体在固体表面的速度滑移、粘附和流体内部滑移的综合作用的结果. 关键词: 纳米尺度流动 速度滑移 浸润性 分子动力学模拟  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号