首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
煤矸智能识别是实现综放开采智能化亟待研发的新技术;可见-近红外光谱技术具有环保、实时等优势,满足煤矸智能分选的要求。为解决基于可见-近红外光谱的煤矸识别问题,引入在数据科学竞赛中表现出色的极端梯度提升树(XGBoost)算法。搭建可见-近红外光谱实验平台采集来自山西西铭、陕西神木、内蒙古巴隆图煤矿的块状煤与矸石样品在370~1 049 nm波段的反射光谱;利用黑白校正、始末波段去除、SG卷积平滑和标准正态变量变换(SNV)对采集的原始光谱进行预处理,以减少光照不均、噪声以及光程差的影响。依据三个煤矿煤与矸石样品反射光谱的差异划分实验组和测试组,实验组差异微小,用于对比不同模型的性能,挑选最佳算法;测试组差异较明显,用于测试最佳算法在其他煤矿下的表现,检验算法对不同煤矿的适用性。在实验组的实验中,首先基于XGBoost算法建立煤与矸石分类模型,并引入常用的机器学习分类算法k近邻法(KNN)、随机森林(RF)、支持向量机(SVM)做对比,结果表明XGBoost的表现最佳,十折交叉验证的平均准确度(ACC10)、分类准确度(ACC)与AUC值分别达到0.957 2,0.970 5与0.971 6,体现出较强的稳定性与分类能力。其次为降低数据维度减少模型运算量,使用递归特征选择(RFE)、连续投影算法(SPA)与竞争性自适应重加权算法(CARS)分别进行特征波长的选择并与上述四种分类算法结合构建简化分类模型,经测试RFE与XGBoost组合的简化模型表现最佳,ACC10,ACC与AUC值分别为0.965 7,0.980 3与0.980 3且数据维度降至9,在降低数据维度的同时提高了模型的稳定性与分类能力。在测试组的实验中,基于优选出的XGBoost与RFE-XGB算法建立的模型,同样可以实现对其他矿区煤与矸石稳定精确地识别,且简化模型表现更好,与实验组结果一致。  相似文献   

2.
煤与矸石是矿山采煤过程中主要固体堆放物,对其进行遥感动态监测是矿山环境保护的重要需求。由于煤与部分矸石存在“异物同谱”现象,在使用传统的可见-近红外遥感分类时,往往将部分矸石划分为煤,导致遥感分类精度降低。首先对铁法矿区的12个煤样本和115个矸石样本进行可见-近红外光谱测试,发现绝大部分矸石样品的光谱与煤差异很大,二者易于区分,但有部分矸石与煤样本存在“异物同谱”现象。为进一步对矸石与煤区分,测试了混分样本的热红外光谱,发现二者存在明显的光谱差异,利用热红外光谱特征可以将其区分开来。在此基础上,提出了基于可见-近红外和热红外光谱联合分析的煤与矸石区分方法。该方法首先对所有样本进行可见-近红外光谱测试,利用Mao模型进行第一步分类识别;其次对煤与矸石混分的样品进行热红外光谱测试,利用光谱吸收比率SAR作为判别指标进行第二步分类,两步的分类结果为最终分类结果。该方法在铁法、兖州、神东和木里矿区的验证结果表明,其具有很高的分类准确率,效果远好于单独基于可见-近红外光谱特征的分类方法。研究结果表明,利用多种光谱联合分析的方法可以解决单波段存在的“异物同谱”现象,对于地物遥感分类具有重要的借鉴意义。  相似文献   

3.
支持向量机复合核函数的高光谱显微成像木材树种分类   总被引:1,自引:0,他引:1  
采用体视显微高光谱成像方法,构建木材树种分类识别模型。利用SOC710VP体视显微高光谱图像采集系统获取可见光/近红外(372.53~1 038.57 nm)波段内的木材高光谱图像。首先,采用ENVI软件提取木材样本感兴趣区域(ROI)的平均光谱,分别采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对光谱数据进行降维。再利用支持向量机(SVM)分别建立木材样本采集波段和特征波长下的分类模型。然后,在空间维采用第一主成分图像,计算基于灰度共生矩阵(GLCM)的木材纹理特征。在0°,45°,90°和135°四个方向计算能量、熵、惯性矩、相关性等16个特征参数后输入SVM进行木材树种分类处理。最后,采用四个复合核函数SVM进行光谱维和空间维的特征融合及分类识别。20个树种的分类实验结果表明,CARS的特征波长选择效果和运行速度较好一些,采用普通SVM进行木材光谱维特征分类处理时,测试集分类准确率达到了92.166 7%。采用基于GLCM的木材空间维纹理特征时,采用普通SVM的测试集分类准确率是60.333 0%,具有较低的分类精度。在将光谱维和空间维纹理特征进行数据融合及分类处理时,采用复合核函数SVM分类具有更好的效果。采用第二个复合核函数的SVM分类精度最高,测试集分类正确率是94.166 7%,运行时间为0.254 7 s。另外,采用第一个和第三个复合核函数的SVM的测试集分类准确率分别是93.333 3%和92.610 0%,运行时间分别为0.180 0和0.260 2 s。可以看出,采用这3种复合核函数的SVM进行木材树种分类,分类精度都高于采用普通SVM的光谱维或者空间维的分类识别精度。因此,利用体视显微高光谱成像和复合核函数SVM可以提高木材树种分类精度,为木材树种快速分类提供了参考。  相似文献   

4.
使用近红外光谱鉴别蚕茧雌雄设备成本较高,挑选有用特征可以减少成本。雌雄蚕茧的近红外光谱存在着共线性的关系,因此提出了一种包裹式的特征选择方法,基于支持向量机的自助重加权采样(BRS-SVM)的特征选择方法。使用NirQuest512近红外光谱仪采集了蚕茧的漫透射近红外光谱。用试验集的全波段建模得到特征重要度热图,并通过热图得到重要特征波段的范围。然后在重要特征波段范围内,分别用BRS-SVM、基于SVM的特征排序方法(MBR-SVM)、基于逻辑回归的特征排序方法(MBR-LR)、递归特征消除法(RFE)、连续投影算法(SPA) 和遗传算法(GA)挑选单波段特征和连续波段面积特征,再分别用支持向量机(SVM)和逻辑回归(LR)建立雌雄分类模型。通过特征重要性热力图发现,蚕茧雌雄分类重要区域在900~1 399 nm内,用此波段范围建立SVM模型,试验集准确率为99.40%。用BRS-SVM挑选5个单波段特征,然后再用SVM建模,验证集准确率为93.88%,高出其他特征选择方法5%~12%,测试集准确率为89.56%,测试集准确率高出其他特征选择方法2%~4%。用BRS-SVM挑选27个单波段特征,建立SVM雌雄分类模型测试集准确率为94.97%,准确率达到生产条件要求。用BRS-SVM挑选的14个连续波段面积特征,再用SVM建模,测试集准确率为94.43%。在挑选少量特征情况下,我们提出的BRS-SVM要优于其他方法。用BRS-SVM挑选少量的特征,可以建立性能良好的蚕茧雌雄分类模型,有效减少了成本,具有重要的现实意义。  相似文献   

5.
三七粉是三七的主要消费和商品形式,市场上存在以次充好、甚至是掺假的现象,由于是粉状物料,难以用肉眼判别,为了实现对不同质量等级的三七粉进行无损鉴别。将30头、40头、60头和80头的三七主根研磨成粉,制备样本。采用可见近红外高光谱成像系统(400.68~1 001.61 nm)采集4种不同头数三七粉,共计384个样品的高光谱图像,提取高光谱图像感兴趣区域(ROI)的平均光谱值作为样本原始光谱。将384个三七粉样本按2∶1的比例划分训练集和测试集。采用卷积平滑(SG)、多元散射校正(MSC)和标准正态变量变换(SNV)3种预处理方法对三七粉样本光谱信息进行预处理并建立支持向量机(SVM)分类模型,通过比较基于3种预处理方法的SVM模型测试集分类准确率,确定SNV为最优预处理方法。采用迭代保留信息变量(IRIV)、变量组合集群分析(VCPA)和变量组合集群分析混合迭代保留信息变量(VCPA-IRIV)3种特征选择方法提取SNV预处理后光谱的特征波长并建立基于特征光谱和原始光谱的SVM分类模型,通过比较基于3种特征选择方法得到的特征波长建立的SVM模型测试集分类准确率,发现将VCPA与IRIV相结合的VCPA-IRIV为最优特征选择方法。VCPA-IRIV提取了18个特征波长代替全光谱数据参与建模,该算法在降低模型复杂度的同时保持了模型的分类精度。为了提高模型的分类精度,采用引力搜索算法(GSA)对SVM模型中惩罚因子c和核参数g进行寻优,并与网格搜索(GS)的结果进行比较,结果表明,VCPA-IRIV-GSA-SVM模型分类效果最好,测试集分类准确率达到100%。可见,利用可见近红外高光谱成像对三七粉进行质量等级无损鉴别是可行的,为市场上三七粉的质量等级鉴别提供了参考。  相似文献   

6.
为提高生鲜羊肉储存期内(4,8和20 ℃环境)挥发性盐基氮(TVB-N)的近红外光谱(NIR)检测的稳定性和准确性,选取特征光谱和预测模型是关键步骤。以121个羊肉样品为实验对象,采集生鲜羊肉680~2 600 nm波段的近红外光谱。以多元散射校正(MSC)、标准正态变换(SNV)等散射校正方法,Savitzky-Golay卷积平滑(SGS)、移动平均平滑(MAS)等平滑处理方法,以及归一化(Normalization)、中心化(Centering)、标准化(Autoscaling)等尺度缩放方法分别预处理光谱数据后建立偏最小二乘法(PLS)预测模型。比较发现SGS处理的光谱建模效果最好。利用蒙特卡洛采样(MCS)法及马氏距离法(MD)消除了羊肉光谱的5个异常数据。运用光谱-理化值共生距离(SPXY)算法划分总样本的75%(87个)为校正集样本,剩余29个为验证集样本,利用竞争性自适应重加权法(CARS)、无信息变量消除法(UVE)、改进的无信息变量消除法(IUVE)和连续投影算法(SPA)提取特征光谱得到的波长个数分别为14,713,144和15。将全光谱和4种方法提取的特征波长作为输入变量建立预测模型,CARS提取的波长所建立模型的性能优于UVE、IUVE和SPA提取的波长所建立模型的性能,表明CARS方法可以有效简化输入变量并提高预测模型的性能。改进后得到的IUVE法相比于UVE法,筛选出的波长数更少且模型性能有所提升。以提取的特征波长建立PLS,支持向量机(SVM)和最小二乘支持向量机(LS-SVM)预测模型,SVM模型得到最优的校正集预测结果,其中CARS-SVM预测模型的校正决定系数(R2C)和校正均方根误差(RMSEC)分别为0.939 1和1.426 7,最优的验证集预测效果为LS-SVM预测模型得到,其中IUVE-LS-SVM预测模型的验证决定系数(R2V)和验证均方根误差(RMSEV)分别为0.856 8和1.886 2。基于近红外特征光谱建立简化、优化的生鲜羊肉储存期TVB-N预测模型,为实现快速无损检测生鲜羊肉中的TVB-N浓度提供技术支持。  相似文献   

7.
千禧番茄营养丰富且酸甜可口,不同千禧番茄品种的风味和营养价值均有明显差异,尤其是番茄红素、柠檬酸、维生素C和氨基酸含量的差异较大。传统人工分类方式效率低、主观性强、误检率高等问题亟待解决。为筛选综合营养价值高且风味佳的千禧番茄品种,实现千禧番茄快速准确分类,提出了基于千禧番茄光谱特征的分类模型构建及GWO优化SVM算法研究,以期解决千禧番茄自动化分类问题。以四个品种千禧番茄作为研究对象,试验样本240个,将其按2∶1比例划分为训练集160个和测试集80个样本,利用可见-近红外光谱采集系统获取350~1 000 nm范围内的千禧番茄反射强度,经光谱校正得样本反射率;为增强信噪比,截取481.15~800.03 nm范围内的光谱波段作为有效波段。由于数据采集过程受无关信息干扰影响建模效果,故将平滑点数设置为3进行Savitzky-Golay(SG)平滑预处理。预处理后采用连续投影算法(SPA)提取特征波长变量,优选得到11个特征波长反射率作为输入矩阵X,预设样本变量1,2,3和4作为输出矩阵Y,利用支持向量机(SVM)建立SPA-SVM千禧番茄定性分类模型,训练集和测试集平均分类准确率分别为59.38%和48.75%;在此基础上,引入灰狼优化算法(GWO)对训练集160个样本训练,寻求SVM最优惩罚系数(c)和核函数参数(g),根据模型训练结果对测试集80个样本预测,建立SPA-GWO-SVM千禧番茄分类模型,训练集和测试集平均分类准确率分别为100%和81.25%。研究结果表明:经灰狼算法优化后的支持向量机模型性能明显提高,其中训练集和测试集平均分类准确率分别提高了40.62%和32.50%,灰狼优化算法可用于提高支持向量机的分类性能,实现对千禧番茄品种的分类。本研究为千禧番茄及其他果蔬快速准确分类提供了新的思路和方法。  相似文献   

8.
高光谱图像作为一种快速无损的分析技术在食品行业中得到广泛应用。腊肠(sausage)是一个非常古老的食物生产和肉食保存技术,中国的腊肠有着悠久的历史。我国商业行业标准SB/T10003-92按腊肠的理化特征,将腊肠分为优级,一级,二级。针对腊肠在近红外(NIR)波段的高光谱信息,采用连续投影算法(SPA)进行特征波段的提取,分别建立了腊肠等级判别模型PLSR(基于全波段的模型)与SPA-MLR(基于特征波段的模型)。其中,基于特征波长的SPA-MLR模型的预测决定系数达到0.929,判别正确率100%。表明采用高光谱图像的近红外波谱信息能够实现腊肠品质的快速、无损分析。  相似文献   

9.
空间分辨光谱和可见/近红外光谱的番茄颜色等级判别   总被引:1,自引:0,他引:1  
比较分析空间分辨光谱和单点可见/近红外光谱(可见/短波近红外光谱和中波近红外光谱)对番茄颜色的识别能力。根据番茄表面和内部颜色将600个样品分为6个等级(green, breaker, turning, pink, light red和red)。分别利用新型空间分辨光谱系统(550~1 650 nm),可见/短波近红外光谱仪(400~1 100 nm)和中波近红外光谱仪(900~1 700 nm)采集番茄的空间分辨(spatially-resolved, SR)光谱和单点可见/近红外(SP Vis/NIR)光谱,建立番茄等级的偏最小二乘判别(PLSDA)模型,比较其对番茄颜色等级的预测效果。结果表明, SR光谱组合可在最佳单一SR光谱基础上进一步提高番茄颜色的识别能力,对番茄表面颜色和内部颜色的识别率可分别达到98.8%和84.6%。光源-检测器距离较近的SR光谱对番茄表面颜色的识别有帮助,而光源-检测器距离较远的SR光谱能较好的判别番茄内部颜色。SP NIR光谱在对番茄表面颜色判别中与SR光谱具有一定可比性,其分类准确率可达到95%,但SP Vis/NIR光谱在对番茄内部颜色识别中具有较低的分类准确率,分类结果远不如SR光谱,说明SR光谱比SP Vis/NIR光谱对番茄颜色的判别更具潜力。  相似文献   

10.
应用紫外可见(ultraviolet/visible,UV/Vis)光谱技术对表征水产养殖水体中有机物浓度的指标化学需氧量(chemical oxygen demand,COD)进行快速测量,对采集到的135份甲鱼养殖水样进行UV/Vis波段全光谱扫描,采用无信息变量消除(uninformative variable elimination,UVE)和连续投影算法(successive projections algorithm,SPA)相结合的变量选择算法选取全波段光谱中的特征波长,从201个UV/Vis光谱变量中选取了7个特征波长,只占全波段光谱变量的3.48%,降低了建模的时间和模型的复杂度。结合最小二乘支持向量机(least-square support vector machine,LS-SVM)算法进行COD预测建模,结果表明:使用特征波长建模的预测效果(相关系数r(correlation coefficient)=0.89,预测均方根误差(root mean square error of prediction,RMSEP)=15.46 mg·L-1)好于使用全波段光谱建模的预测效果(r=0.88,RMSEP = 15.71 mg·L-1)。使用UVE-SPA变量选择算法获取UV/Vis光谱特征波长,结合LS-SVM建模,可以快速、准确的测量水产养殖水体中的COD浓度,为进一步实现水产养殖水质的在线检测以及其他水质参数的快速测定奠定了基础。  相似文献   

11.
大豆水分含量的高光谱无损检测及可视化研究   总被引:1,自引:0,他引:1  
采用近红外高光谱成像技术对大豆水分含量进行快速无损检测,实现大豆水分含量可视化。采集了96个不同品种大豆样本在900~2 500 nm的高光谱图像,采用直接干燥法测量每个大豆样品的水分含量。利用系统自带的HSI Analyzer软件提取图像感兴趣区域(ROI)的平均光谱信息,代表样品的光谱信息。利用SPXY算法划分样品校正集和预测集,并保留938~2 215 nm波段范围内的光谱数据。采用移动平滑(moving average)、S-G平滑、基线校正(baseline)、归一化(normalize)、标准正态变量变换(standard normal variate,SNV)、多元散射校正(multiple scattering correction,MSC)、去趋势(detrending)共7种光谱预处理方法,发现Normalize方法处理后的PLSR模型效果较好。为了去除光谱冗余信息,简化预测模型,采用连续投影算法(SPA)、竞争性自适应加权算法(CARS)、无信息消除变量法(UVE)提取特征波长,其中SPA,CARS和UVE三种算法优选出14,16和29个波长,分别占总波长的6.5%,7.4%和13.4%。分别对938~2 215 nm波段光谱和特征波长建立预测模型,并将效果较优的模型与Normalize方法结合。建立的14种预测模型效果相比较,发现SPA算法筛选的特征波长建模预测效果较好,并优选出Normalize-SPA-PCR模型,模型的RCP值较高,分别为0.974 6和0.977 8,RMSEP和RMSECV值较低,分别为0.238和0.313,模型的稳定性和预测性较好,可以对大豆水分含量进行准确预测。将Normalize-SPA-PCR模型作为大豆水分含量可视化预测模型,计算高光谱图像每个像素点的水分含量,得到灰度图像,对灰度图像进行伪彩色变换,得到大豆水分含量可视化彩色图像。对预测集的24个大豆品种进行可视化处理,发现不同水分含量大豆的可视化图像颜色不同,水分含量变化对应的颜色变化较为明显。结果表明,高光谱成像技术结合化学计量学可以准确快速无损预测大豆水分含量,实现大豆水分含量可视化,为大豆收获、贮藏加工过程中水分含量检测提供了技术支持。  相似文献   

12.
基于高光谱成像技术的土壤水分机理研究及模型建立   总被引:1,自引:1,他引:0  
为了研究宁夏地区土壤的水分迁移机理以及对土壤水分快速无损检测,利用高光谱成像(光谱范围900~1 700 nm)技术对土壤的含水率进行了研究。通过高光谱成像系统采集了208个土样,比较了不同天数下土壤含水率与光谱的变化、不同质量含水量光谱的差异。对采集到的土样进行PLSR模型建立,对比分析不同光谱预处理方法、不同方法提取特征波长(UVE、CARS、β系数、SPA)、不同建模方法(MLR、PCR、PLSR)建立的模型,优选出最佳模型。结果表明:在一定的土壤含水量范围内,光谱曲线的反射率与土壤含水率成反比;当增大到超过田间持水率时,光谱曲线的反射率与土壤含水率成正比。对比分析了不同预处理方法,优选出单位向量归一化预处理方法。对比不同的模型,优选出SPA提取的特征波长的MLR模型。最优的特征波长为987,1 386,1 466,1 568,1 636,1 645 nm,最优模型的预测相关系数Rp=0.984,预测均方根误差RMSEP为0.631。因此,今后可采用不同波段对土壤含水率进行定量分析。  相似文献   

13.
高光谱图像技术在农产品检测及识别方面有广阔的应用前景。野生黑枸杞经济效益显著,经常被种植黑枸杞冒充。提出一种利用高光谱图像对野生黑枸杞无损快速识别的方法。主要内容和结果如下:(1)共采集256份(野生、种植各128份)黑枸杞在900~1 700 nm范围的高光谱反射光谱,每份平均光谱作为此样品的光谱;(2)采用标准正态变换(SNV)对采集的光谱预处理;基于Kennard-Stone法,按照校正集和预测集比例为2∶1对样品划分,用连续投影算法(SPA)对光谱进行降维处理,提取特征波长30个;分别将全光谱和SPA 提取的30个特征波长作为模型输入,建立支持向量机(SVM)、极限学习机(ELM)和随机森林(RF)识别模型。(3)结果表明,在识别野生黑枸杞模型中,基于全光谱和SPA建立的SVM,ELM和RF模型校正集识别率均高于98.8%,基于全光谱和SPA建立的SVM,ELM和RF模型预测集识别率均高于97.7%。基于全光谱(FS)建立的三种识别模型略优于基于SPA建立的三种识别模型。但从简化模型方面,SPA提取的特征波常数仅为全光谱的11.8%,大大降低了模型运算量。三种模型中,基于随机森林模型无损识别野生黑枸杞效果最好,均达到100%。研究表明,利用高光谱图像技术结合分类模型可快速识别野生黑枸杞。  相似文献   

14.
基于高光谱技术的土壤水分无损检测   总被引:2,自引:0,他引:2  
利用高光谱成像仪(光谱范围400~1 000 nm)对土壤含水率进行了无损检测。比较了208个土样不同天数下土壤含水率与光谱变化、不同质量含水量光谱的差异;对比分析了不同光谱预处理方法、不同方法提取特征波长、采用多元线性回归(multiple linear regression,MLR)、主成分回归(principal component regression,PCR)与偏最小二乘回归(partial least squares regression,PLSR)建模,优选出最佳模型。结果表明:光谱曲线的反射率随着土壤含水率的增加而减小。当超过田间持水率时,光谱曲线的反射率会随着土壤含水率的增加而增大。对比分析了不同预处理方法,近红外波段优选出单位向量归一化预处理方法。采用无信息变量消除法(UVE)、竞争自适应加权采样(CARS)、β系数法、连续投影算法(SPA)方法提取特征波长为49,30,5和7。为了减少数据冗余,对UVE与CARS提取的特征波长进一步采用SPA方法进行特征提取,UVE+SPA,CARS+SPA提取特征波长数分别为5和8个。在此基础上,利用MLR,PCR和PLSR方法对400~1 000 nm范围的特征波长建立模型,对比分析不同建模效果,优选出β系数提取的特征波长的MLR模型。最优的特征波长为411,440,622,713和790 nm,最优模型的预测相关系数Rp=0.979,预测均方根误差RMSEP为0.763。因此,今后可采用不同波段对土壤含水率进行定量分析。  相似文献   

15.
提出了基于连续投影算法(successive projections algorithm,SPA)、载荷系数法(x-loading weights,x-LW)和格拉姆-施密特正交(gram-schmidt orthogonalization,GSO)提取特征波长的高光谱成像技术检测番茄叶片早疫病的方法。首先获取380~1 023 nm波段范围内70个健康和70个染病番茄叶片的高光谱图像信息,然后提取健康和染病叶片感兴趣区域(region of interest, ROI)的光谱反射率值,建立番茄叶片早疫病的最小二乘-支持向量机(least squares-support vector machine,LS-SVM)鉴别模型,建模集和预测集的鉴别率都是100%。再通过SPA 、x-LW和GSO提取特征波长(effective wavelengths,EW),并建立EW-LS-SVM和特征波长-线性判别分析(ew-linear discriminant analysis,EW-LDA)鉴别模型。结果显示,每个模型的鉴别效果都很好,EW-LS-SVM模型中预测集的鉴别率都达到了100%,EW-LDA模型中预测集的鉴别率分别是100%, 100%和97.83%。基于SPA, x-LW和GSO所建模型的输入变量分别是4个(492,550,633和680nm),3个(631,719和747 nm)和2个(533和657 nm),较少的特征波长便于实时检测仪器的开发。结果表明,高光谱成像技术检测番茄叶片早疫病是可行的,SPA,x-LW和GSO都是非常有效的特征波长提取方法。  相似文献   

16.
高光谱成像技术无损检测赣南脐橙表面农药残留研究   总被引:1,自引:0,他引:1  
高光谱成像技术具备图像和光谱的双重优势,作为一种快速无损检测分析技术,检测过程无损、无污染和无接触。高光谱成像数据包括样本的图像信息和光谱信息,采集样本高光谱成像数据时,样本的每个像素点都有一条光谱与之对应,样本的每个波长都有一幅灰度图像与之对应。研究采用高光谱成像技术无损检测不同稀释浓度的农药在赣南脐橙样品表面残留随时间变化的关系。用蒸馏水把农药分别配置成1∶20, 1∶100和1∶1 000倍的溶液。然后把不同浓度的溶液滴到30个洗净的脐橙表面, 将涂有农药的脐橙分别放置0,4和20 d,然后采集在900~1 700 nm波长范围的高光谱成像原始数据。通过主成分分析获取930,980,1 100,1 210,1 300,1 400,1 620和1 680 nm共8个特征波长,基于这些特征波长做第二次主成分分析,应用PC-2图像并经过适当的图像处理方法对不同浓度及放置不同天数的农药残留进行无损检测。采用高光谱成像技术检测三个时间段较高稀释浓度的果面农药残留都比较明显。高光谱成像技术作为一种检测方法,可用于评价各个时间段较高浓度的农药残留。  相似文献   

17.
为了对鸡种蛋胚胎进行雌雄识别,探究利用紫外-可见-近红外透射光谱进行鸡胚雌雄识别的可行性,搭建了鸡种蛋透射光谱检测系统,采用横向和竖向大头朝上2种放置方式获取210枚鸡种蛋孵化0~15 d的光谱,光谱范围为360~1 000 nm。构建极限学习机(ELM)鸡胚雌雄识别模型,通过比较不同放置方式和孵化天数下模型的识别准确率,发现竖向放置且孵化第7 d的识别效果最好;将竖向放置孵化第7 d的光谱初步分为紫外(360~380 nm)、可见光(380~780 nm)、近红外(780~1 000 nm)、紫外-可见光(360~780 nm)和全波段(360~1 000 nm)5个不同的波段范围来分析,预测集准确率分别为82.86%,77.14%,75.71%,84.29%和81.43%,筛选出360~780 nm的紫外-可见光波段为有效波段;在紫外-可见光(360~780 nm)波段,采用多元散射校正(MSC)去噪,并用竞争性自适应重加权采样算法(CARS)和连续投影算法(SPA)筛选特征波长降维,建立不经筛选特征波长、CARS筛选特征波长和SPA筛选特征波长的3种ELM模型。其中不经筛选特征波长的ELM模型识别效果最好,但输入变量最多,隐含层神经元为680且激活函数为sig时,预测集准确率为84.29%。SPA筛选特征波长的ELM模型识别效果次之,输入变量有9个,隐含层神经元为840且激活函数为hardlim时,预测集准确率为81.43%。CARS筛选特征波长的ELM模型识别效果最差,输入变量有27个,隐含层神经元为100且激活函数为sig时,预测集准确率为78.57%;用遗传算法(GA)优化ELM模型的权值变量和隐含层阈值,不经筛选特征波长建立的GA-ELM模型,预测集准确率为87.14%,SPA筛选特征波长建立的GA-ELM模型,预测集准确率为87.14%,CARS筛选特征波长建立的GA-ELM模型,预测集准确率为81.43%。紫外-可见光波段不经筛选特征波长的GA-ELM模型识别效果和经SPA筛选特征波长的GA-ELM模型相同,表明SPA筛选的特征波长变量能够有效反映360~780 nm波段的信息,SPA使用的变量数仅占紫外-可见光波段的2.14%,因此,雌雄识别最佳模型为紫外-可见光波段经SPA筛选特征波长的GA-ELM模型,预测集准确率为87.14%,其中,雌性识别率为88.57%,雄性识别率为85.71%,单个样本平均判别时间0.080 ms。结果表明紫外-可见透射光谱技术和ELM模型为孵化早期鸡胚蛋雌雄识别提供了一种可行方法。  相似文献   

18.
提出了利用可见/近红外高光谱成像技术检测高温障碍胁迫下番茄叶片色差的方法。首先采集380~1 023 nm波段范围内60个高温障碍胁迫和60个健康番茄叶片的高光谱图像,同时获取全部叶片的色差值(L*, a*b*),然后提取所有样本的高光谱图像中感兴趣区域(region of interest, ROI)的光谱反射率值。基于不同预处理方法建立偏最小二乘(partial least squares, PLS)预测模型,再利用连续投影算法(successive projections algorithm, SPA)提取特征波长并建立SPA-PLS预测模型。最后分别基于全波段和特征波段建立偏最小二乘-判别分析(partial least squares-discriminant analysis, PLS-DA)模型。结果显示,全波段中基于原始光谱信息建立的模型效果最好,3个色差值的预测集决定系数(determination coefficient, R2)分别是0.818,0.109和0.896;基于特征波长建立的模型预测集R2分别是0.591,0.244和0.673;所有模型预测集的总体识别率均大于77.50%。结果表明,可见/近红外高光谱成像技术检测番茄叶片色差值(L*和b*)和识别高温障碍样本是可行的。  相似文献   

19.
高光谱成像技术不仅可以获得样品的图像信息,每个像素点还包含了光谱信息,因其信息量丰富的特点已在食品安全检测方面得到了应用。该研究应用近红外高光谱成像技术检测面粉中偶氮甲酰胺。分别采集纯偶氮甲酰胺、纯面粉和面粉中10种不同浓度偶氮甲酰胺混合样品的高光谱图像。通过比较纯偶氮甲酰胺和纯面粉的平均漫发射光谱,找到两者区分度较大的4个吸收波段:1 574.38,2 038.55,2 166.88和2 269.91 nm。采用二阶导数对样品图像中的像素点光谱进行预处理,通过光谱角制图、光谱相关角和光谱相关性度量三种光谱相似性分析方法对混合样品中的偶氮甲酰胺像素和面粉像素进行检测。结果表明,预处理后的平均光谱不能有效检测面粉中偶氮甲酰胺;单像素点光谱结合光谱相似性分析实现了混合样品中偶氮甲酰胺像素和面粉像素的分类;分类结果的验证显示了偶氮甲酰胺像素和面粉像素的正确分类。研究结果为利用高光谱技术检测面粉中添加剂提供了方法支持,为食品中掺杂物的检测提供参考。  相似文献   

20.
高光谱成像技术的油菜叶片氮含量及分布快速检测   总被引:4,自引:0,他引:4  
应用高光谱成像技术实现了油菜苗-花-角果整个生命期叶片氮含量的快速检测和氮素水平分布的可视化。采集三个生长时期共计420个叶片样本的高光谱图像信息(380~1 030 nm),提取图像中感兴趣区域的平均光谱数据,经过不同光谱预处理后,利用连续投影算法(SPA)选择特征波长,将提取的12个特征波长(467,557,665,686,706,752,874,879,886,900,978和995 nm)作为自变量,叶片氮含量作为因变量,分别建立偏最小二乘法(PLS)和最小二乘-支持向量机(LS-SVM)模型。SPA-PLS和SPA-LS-SVM模型对叶片氮含量的预测相关系数RP分别为0.807和0.836,预测均方根误差RMSEP分别为0.387和0.358。高光谱图像中的每一个像素点都有对应的光谱反射值,利用结构简单、更易提取回归系数的SPA-PLS模型,快速计算出12个特征波长下高光谱图像中每个像素点对应的氮含量预测值,结合像素点的空间位置生成氮素浓度的叶面分布图。可视化分布图详细且直观的反应出同一叶片内部或不同叶片之间氮含量的差异。结果表明,应用高光谱成像技术分析整个油菜生长期的叶片氮含量及其可视化分布是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号