首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 130 毫秒
1.
恒星光谱自动分类是研究恒星光谱的基础内容,快速、准确自动识别、分类恒星光谱可提高搜寻特殊天体速度,对天文学研究有重大意义。目前我国大型巡天项目LAMOST每年发布数百万条光谱数据,对海量恒星光谱进行快速、准确自动识别与分类研究已成为天文学大数据分析与处理领域的研究热点之一。针对恒星光谱自动分类问题,提出一种基于卷积神经网络(CNN)的K和F型恒星光谱分类方法,并与支持向量机(SVM)、误差反向传播算法(BP)对比,采用交叉验证方法验证分类器性能。与传统方法相比CNN具有权值共享,减少模型学习参数;可直接对训练数据自动进行特征提取等优点。实验采用Tensorflow深度学习框架,Python3.5编程环境。K和F恒星光谱数据集采用国家天文台提供的LAMOST DR3数据。截取每条光谱波长范围为3 500~7 500 部分,对光谱均匀采样生成数据集样本,采用min-max归一化方法对数据集样本进行归一化处理。CNN结构包括:输入层,卷积层C1,池化层S1,卷积层C2,池化层S2,卷积层C3,池化层S3,全连接层,输出层。输入层为一批K和F型恒星光谱相同的3 700个波长点处流量值。C1层设有10个大小为1×3步长为1的卷积核。S1层采用最大池化方法,采样窗口大小为1×2,无重叠采样,生成10张特征图,与C1层特征图数量相同,大小为C1层特征图的二分之一。C2层设有20个大小为1×2步长为1的卷积核,输出20张特征图。S2层对C2层20张特征图下采样输出20张特征图。C3层设有30个大小为1×3步长为1的卷积核,输出30张特征图。S3层对C3层30张特征图下采样输出30张特征图。全连接层神经元个数设置为50,每个神经元都与S3层的所有神经元连接。输出层神经元个数设置为2,输出分类结果。卷积层激活函数采用ReLU函数,输出层激活函数采用softmax函数。对比算法SVM类型为C-SVC,核函数采用径向基函数,BP算法设有3个隐藏层,每个隐藏层设有20,40和20个神经元。数据集分为训练数据和测试数据,将训练数据的40%,60%,80%和100%作为5个训练集,测试数据作为测试集。分别将5个训练集放入模型中训练,共迭代8 000次,每次训练好的模型用测试集进行验证。对比实验采用100%的训练数据作为训练集,测试数据作为测试集。采用精确率、召回率、F-score、准确率四个评价指标评价模型性能,对实验结果进行详细分析。分析结果表明CNN算法可对K和F型恒星光谱快速自动分类和筛选,训练集数据量越大,模型泛化能力越强,分类准确率越高。对比实验结果表明采用CNN算法对K和F型恒星光谱自动分类较传统机器学习SVM和BP算法自动分类准确率更高。  相似文献   

2.
《光子学报》2021,50(9)
传统卷积神经网络模型在高光谱图像分类生成特征图的空间维度中存在大量的空间特征信息冗余,而且把高光谱图像单个像元上的光谱带数据看作是无序高维向量进行数据处理,并不符合光谱数据的特性,极大影响了模型的运行效率和分类性能。针对该问题,提出一种三维Octave卷积和双向循环神经网络注意力网络相结合的高光谱图像分类方法。首先,利用三维Octave卷积获取高光谱图像的空间特征的同时减少空间特征冗余信息。其次,利用Bi-RNN光谱注意力网络将光谱带数据视为有序序列以获取高光谱图像的光谱信息。然后,通过全连接层将空间和光谱特征图连接起来实现特征融合。最后,经过softmax输出分类结果。实验结果表明,所提方法在Pavia University和Botswana两个数据集上的分类精度分别达到了99.97%和99.79%,与其他主流算法相比,该方法可以充分利用空间和光谱特征信息,具有更佳的分类性能。  相似文献   

3.
水果采收期的成熟度决定了其最终食用品质,选择果实最佳的采收期是提高水果品质的关键措施之一。可见-近红外光谱技术以其快速、无损的检测特点,适合用于水果的成熟度、采收期检测。由于采收期果实品质差异大,传统化学计量学方法需进行复杂的光谱预处理,模型难以满足不同的季节、果园等需求。提出了一种基于全卷积神经网络(CNNs)的黄花梨采收期可见-近红外光谱(Vis-NIR)检测方法,利用卷积神经网络进行光谱特征信息提取,采用误差反向传播算法结合随机梯度下降法进行层与层之间的连接权重调节,输出多采收期的Logistic回归结果,实现了黄花梨采收期的端到端检测。设计了包含1个输入层、 2个卷积层、 1个池化层和1个Softmax输出层等5层的一维全卷积神经网络,采用交叉熵为损失函数,增加L2正则项以防止模型的过拟合,无光谱预处理,对比分析了此方法与PLSDA方法的建模结果。试验采集了两个年度黄花梨样品共450个,其中,第一年度的300个组成训练集, 90个样本组成测试集1,第二年度的60个样本组成测试集2。实验结果表明,当测试集样品与训练集来自相同年份时, PLSDA和CNNs模型对测试样品集采收期正确识别率均为100%,当测试集样品来自不同年份时,测试集样品采收期的正确识别率分别降为41.67%和88.33%,相关系数、互信息计算模型的回归系数表明, CNNs模型充分利用了样品全波段信息。可见, CNNs方法通过迭代对卷积核进行优化,实现了更灵活的光谱预处理,可降低模型训练难度,所建模型有较好的可解释性和泛化能力,该方法对建立稳健的水果采收期可见-近红外光谱检测模型有一定的参考价值,有利于实现水果精细化的分期、分批采收。  相似文献   

4.
目前肺炎类型判别主要依靠医生的经验,但一些肺炎的CT影像极为近似,即使有经验的医生,也容易判别错误,造成误诊。为此提出卷积神经网络分类算法,该算法由3个卷积层、3个亚采样层及1个完全连接层组成,并且对卷积层进行了特殊结构处理,由反向传播算法调整网络参数,并对反向传播过程提出了改进。临床实验证明,该方案较现在普遍研究的分类算法,如adaboost算法和svm算法具有更高的识别率和准确度,并且改进的卷积神经网络防止了训练数据时过拟合现象的产生。  相似文献   

5.
卷积神经网络(CNN)在图像分类识别领域应用广泛,但其在近红外光谱分类中的研究还未见报道,对基于CNN的近红外光谱分类建模方法进行了研究。针对近红外光谱数据的特点,提出了一种改进的卷积神经网络建模方法,对CNN经典模型LeNet-5所做改进:①将方形矩阵卷积核改为适用于一维近红外光谱的向量卷积核;②简化网络结构,将LeNet-5结构中C5,F6及输出层改为单层感知机。同时,采用隔点采样的方法对近红外光谱降维,加快收敛速度;并对卷积核尺寸对建模结果的影响进行了研究。以我国东北、黄淮、西南三大烤烟产区的600个中部烟叶样本的近红外光谱为实验对象,建立烟叶产区分类NIR-CNN模型。该模型对训练集和测试集的判别准确率为98.2%和95%。实验结果表明,应用卷积神经网络可对近红外光谱数据准确、可靠地判别分类;烟叶产区NIR-CNN建模方法可为卷烟企业烟叶原料科学合理利用提供指导,为维护卷烟产品的质量稳定有重要意义;基于卷积神经网络的近红外光谱判别方法也可推广到其他农产品的分类应用中。  相似文献   

6.
基于卷积神经网络与光谱特征的夏威夷果品质鉴定研究   总被引:1,自引:0,他引:1  
夏威夷果含油量高,在开缝之后容易发生变质,现有关于夏威夷果品质鉴定的方法多为传统的破坏性检验,很难满足无损检测的需求。卷积神经网络(CNN)作为应用最广泛的深度学习网络模型之一,具有比浅层学习方法更强的特征提取与模型表达能力,在光谱数据方面的应用拥有很大潜力。基于夏威夷果在可见-近红外的光谱特征分析,研究用于提取夏威夷果光谱特征的卷积神经网络模型,并提出一种高效无损鉴定夏威夷果品质的方法。首先以三种不同品质的夏威夷果(好籽、哈籽及霉籽)为研究对象,分析样本在500~2 100 nm的光谱信息;在光谱数据预处理中引入白化处理方法,用以增强数据的相关性差异;然后在模型训练过程中,将样本随机分为训练集和预测集,探讨不同CNN结构、卷积层数、卷积核大小及个数、池化层类型、全连接层神经元个数以及激活函数对分类结果的影响,并采用激活函数ReLU和Dropout方法,预防样本数据过少引起的过拟合现象;最后通过分析模型分类准确率和计算效率,确定了一个6层结构的CNN模型: 输入层-卷积层-池化层-全连接层(200神经元)-全连接层(100神经元)-输出层。实验结果表明: 上述网络模型对校正集和预测集的分类准确率均达到100%。因此,改进后的卷积神经网络模型可充分学习夏威夷果的光谱特征并有效分类,将深度学习理论与光谱分析相结合的方法能够实现对夏威夷果品质的准确鉴定,同时为夏威夷果等坚果类食品的高效、无损、实时在线检测提供了新思路。  相似文献   

7.
叶红卫  戴光智 《应用声学》2017,25(5):225-227
BP神经网络是一种多层前馈网络,数据经过网络的输入层、隐含层逐层处理后,由输出层进行输出,通过和期望输出的对比进行反向传播,调整网络参数使输出不断逼近期望输出;在使用BP神经网络对语音特征信号进行分类的过程中,会出现BP神经网络易陷入局部最优解、学习收敛速度慢的问题;针对此问题提出一种基于SFLA优化BP神经网络权值和阀值的方法,引入SFLA算法优化网络权值和阀值,利用SFLA优化后的BP网络模型进行语音特征信号分类;仿真结果表明,经SFLA优化后的BP神经网络与未优化的神经网络相比,不仅训练速度快, 而且误差小,语音特征信号分类的正确率平均提高1.31%。  相似文献   

8.
矮新星是一类特殊而稀少的半相接双星。发现更多的矮新星对于深入研究物质转移理论、理解密近双星演化过程意义深远。利用深度学习技术提取天体光谱特征并进而分类是天文数据处理领域的研究热点。传统的自编码器是仅包含一个隐层的经典神经网络模型,编码能力有限,数据表征学习能力不足。模块化拓宽神经网络的深度能够驱使网络继承地学习到天体光谱的特征,通过对底层特征的逐渐抽象学习获得高层特征,进而提高光谱的分类准确率。以自编码器为基础构建了由输入层、若干隐藏层和输出层组成的基于多层感知器架构的深度前馈堆栈式自编码器网络,用于处理海量的光谱数据集,挖掘隐藏在光谱内部具有区分度的深度结构特征,实现对矮新星光谱的准确分类。鉴于深度架构网络的参数设置会严重影响所构建网络的性能,将网络参数的优化分为逐层训练和反向传播两个过程。预处理后的光谱数据先由输入层进入网络,再经自编码器算法和权值共享实现对网络参数的逐层训练。反向传播阶段将初始样本数据再次输入网络,以逐层训练所得的权值对网络初始化,再把网络各层的局部优化训练结果融合起来,根据所设置的输出误差代价函数调整网络参数。反复地逐层训练和反向传播,直到获得全局最优的网络参数。最后由末隐层作为重构层搭建支持向量机分类器,实现对矮新星的特征提取与分类。网络参数优化过程中利用均值网络思想使网络隐层单元输出按照dropout系数衰减,并由反向传播算法微调整个网络,从而防止发生深度过拟合现象,减少因隐层神经元间的相互节制而学习到重复的数据表征,提高网络的泛化能力。该网络分布式的多层次架构能够提供有效的数据抽象和表征学习能力,其特征检测层可从无标注数据中隐式地学习到深度结构特征,有效刻画光谱数据的非线性和随机波动性,避免了光谱特征的显式提取,体现出较强的数据拟合和泛化能力。不同层之间的权值共享能够减少冗余信息的干扰,有效化解传统多层次架构网络易陷入权值局部最小化的风险。实验表明,该深度架构网络在矮新星分类任务中能达到95.81%的准确率,超过了经典的LM-BP网络。  相似文献   

9.
高光谱图像具有较高的空间分辨率,蕴含着丰富的空间光谱信息,近年来被广泛用于城市地物分类中。在高光谱图像分类过程中,空间光谱特征的提取直接影响着分类精度;传统的高光谱图像特征提取方法只利用了4或8邻域的像素进行简单卷积处理,因而丢失了大量的复杂、有效信息;卷积神经网络(CNN)虽然可以自动提取空间光谱特征,在保留图像空间信息的同时,简化网络模型,但是,随着网络深度增加,网络分类产生退化现象,而且网络间缺乏相关信息的互补性,从而影响分类精度。该工作引入CNN自动提取空间光谱特征,并且针对CNN深度增加所导致的退化问题,设计了面向地物分类的高光谱特征融合残差网络。首先,为了降低高光谱图像的光谱冗余度,利用PCA提取主要光谱波段;然后,为了逐级提取光谱图像的空间光谱特征,定义了卷积核为16,32,64的低、中、高3层残差网络模块,并利用64个1×1的卷积核对3层特征输出进行卷积,完成维度匹配与特征图融合;接着,对融合后的特征图进行全局平均池化(GAP)生成用于分类的特征向量;最后,引入具有可调节机制的Large-Margin Softmax损失函数,监督模型完成训练过程,实现高光谱图像分类。实验采用Indian Pines,University of Pavia和Salinas地区的高光谱图像来验证方法有效性,设置批次训练的样本集为100,网络训练的初始学习率为0.1,当损失函数稳定后学习率降低为0.001,动量为0.9,权重延迟为0.000 1,最大训练迭代次数为2×104,当3个数据集的样本块像素分别设置为25×25,23×23,27×27,网络深度分别为28,32和28时,3个数据集的分类准确率最高,其平均总体准确率(OA)为98.75%、平均准确率(AA)的评价值为98.1%,平均Kappa系数为0.98。实验结果表明,基于残差网络的分类方法能够自动学习更丰富的空间光谱特征,残差网络层数的增加和不同网络层融合可以提高高光谱分类精度;Large-Margin Softmax实现了类内紧凑和类间分离,可以进一步提高高光谱图像分类精度。  相似文献   

10.
恒星光谱数据的分类是天体光谱自动识别的最基本任务之一,光谱分类的研究能够为恒星的演化提供线索。随着科技的发展,天文数据也向大数据时代迈进,需要处理的恒星光谱数量越来越多,如何对其进行自动而精准地分类成为了天文学家要解决的难题之一。当前恒星光谱自动分类问题的解决方法相对较少,为此本文使用了一种基于卷积神经网络的方法对恒星光谱MK系统进行分类。该网络由数据输入层、四个卷积层、四个池化层、全连接层、输出层构成,与传统网络相比具有局部感知、参数共享等优点实验。在Python3.5的环境下编程,利用Tensorflow构建了一个简单高效的具有四个卷积层的卷积神经网络,并将Dropout作用于全连接层之后以防止过度拟合。Dropout的基本思想:当网络模型进行训练时,把一些神经网络节点按一定的比例丢弃,使其暂时不发挥作用。Dropout可以理解成是一种十分高效的神经网络模型平均方法,由于它不依赖于某些局部特征所以能够让网络模型更加鲁棒。实验中使用的一维恒星光谱图是取自LAMOST DR3数据库,首先进行预处理截取光谱3 600~7 300 Å的部分,均匀采样后使用min-max标准化法对其进行初始化。实验包括两部分:第一部分为依据恒星光谱MK系统对光谱进行分类,每一类的训练样本包含1 000条光谱数据,测试样本为400条光谱数据,首先通过训练样本对CNN网络进行训练,进行3 000次的迭代,用训练后的网络将测试样本进行分类以验证网络的准确性;第二部分为相邻两类的恒星光谱的分类,其中O型星数据集样本为250条光谱,其余类别恒星样本数据集均为4 000条光谱,将数据5等分,每次选取当中的一份当作测试集,其余部分当作训练集,采用5折交叉验证法求得模型准确率,用BP神经网络进行对比实验。选择对网络模型进行评估的指标包括精确率P、召回率R、F-score、准确率A。实验结果显示CNN在对六类恒星光谱进行分类时其准确率都在95%以上,在对相邻类别的恒星进行分类时,由于O型星样本量较少,所以得到的分类结果不太理想,对其余类别的恒星分类准确率都高于98%,以上结果都证明了CNN算法能够很好地解决恒星光谱的分类问题。  相似文献   

11.
胚蛋雌雄识别一直是家禽业发展的瓶颈问题,在禽肉生产过程中倾向于养殖雄性个体,而禽蛋生产产业倾向于养殖雌性家禽。若能在孵化过程中较早鉴别出种蛋的雌雄,不仅能够降低家禽孵化产业的成本,还能够提高禽蛋和禽肉生产行业的经济效益。该文以种鸭蛋为研究对象,为了在种鸭蛋孵化早期实现对种蛋的雌雄识别,构建了可见/近红外透射光谱信息采集系统,在200~1 100 nm的波长范围内采集了345枚孵化了0~8 d的种鸭蛋光谱数据。搭建了适用于种鸭蛋光谱信息的6层卷积神经网络(convolutional neural network, CNN),其中包括输入层、3个卷积层、全连接层与输出分类层。卷积层可以提取光谱中的有效信息,全连接层通过对卷积层提取的局部特征进行整合供输出层分类决策。另外在卷积神经网络中引入局部响应归一化和dropout操作能够加快网络的收敛速度。利用该卷积神经网络构建鸭胚雌雄信息识别网络,通过对比与分析不同孵化天数的识别效果,发现孵化7d的识别效果最佳。随后将孵化7 d的种鸭蛋原始光谱数据进行噪声去除,选取500~900 nm波段用于后续的特征波长选取和建模。分别运用了竞争性自适应重加权算法(CARS)、连续投影算法( SPA)与遗传算法(GA)选择能够区分鸭胚性别的波长点,将选取的特征波长转换为二维的光谱信息矩阵,二维光谱信息矩阵保留了一维光谱的有效信息,同时极大地方便了与卷积神经网络的结合。利用二维光谱信息矩阵和卷积神经网络相结合,实现孵化早期阶段鸭胚的雌雄识别。经检验,基于 SPA算法和CNN网络建立的模型效果较佳,其中训练集、开发集及测试集的准确率分别为93.36%,93.12%和93.83%;基于GA算法和CNN网络建立的模型效果次之,训练集、开发集及测试集的准确率分别为90.87%,93.12%和86.42%;基于CARS算法和CNN网络建立的模型的训练集、开发集及测试集的准确率分别为84.65%,83.75%和77.78%。研究结果表明基于可见/近红外光谱技术和卷积神经网络可以实现孵化早期鸭胚胎雌雄的无损鉴别,为后续相关自动化检测装置的研发提供了技术支撑。  相似文献   

12.
土壤pH值是影响土壤养分转化和土壤肥力的关键因素,使用近红外光谱技术对土壤pH值进行检测可为土壤资源的开发利用提供重要依据。卷积神经网络作为深度学习在人工智能方面的典型算法,由于其结构具备“局部感知,权值共享”的能力,因此不仅能够对复杂的光谱数据进行特征抽取,还能够减少网络的训练参数,提高网络的运算效率。将卷积神经网络用于近红外光谱的建模分析,并提出一种基于一维卷积的卷积神经网络和近红外光谱的土壤pH值预测方法。网络由Python语言调用Tensorflow工具包搭建而成,其结构由输入层、卷积层、池化层以及全连接层四部分组成。以欧洲统计局在2008年-2012年开展的土地利用及覆盖面积统计调查所收集的矿物质土壤光谱样本数据集为研究对象,为消除光谱中存在的基线漂移,提高信噪比,对原始可见光近红外光谱(400~2 500 nm)进行一阶导数和Savitzky-Golay平滑处理。在模型训练过程中,随机选取15 000个样本作为训练集,剩余的2 272个样本作为测试集,探讨不同的卷积层个数及训练迭代次数对模型性能的影响,并采用ReLU激活函数及Adam优化器防止模型出现梯度消失现象,提高模型的稳定性,之后通过分析模型的拟合优度和运算成本确定模型的最佳性能,最后将网络模型与传统的BP和PLSR模型进行对比。结果显示,当模型迭代次数为2 500次,卷积层个数为4层时,模型达到最佳状态,模型对训练集的均方误差从1.898降到了0.097;模型对测试集的拟合优度为0.909,分别比BP和PLSR模型高0.117和0.218。使用卷积神经网络可以对土壤近红外光谱的内部特征信息进行抽取,从而实现对大面积土壤pH值的高效准确预测。CNNR模型可对农作物的合理栽种及精准施肥提供指导,从而达到土壤结构稳定和可持续发展的目的。基于卷积神经网络的近红外光谱回归方法也可以推广到其他土壤信息研究。  相似文献   

13.
近年来,随着各大光谱巡天项目的陆续实施,观测得到的天体光谱数据急剧增长。大型光谱巡天项目对光谱的自动分类和分析提出了更高的要求。本文将分类问题转化为回归问题,提出一种基于深度残差网络的光谱类别预测方法,对恒星光谱进行光谱次型预测。网络主要包括25个卷积层,1个最大池化层,1个平均池化层,全连接层以及12个残差结构。最大池化层用来筛选特征,卷积层提取特征,平均池化层用于减少模型参数,提高效率。残差结构可以防止网络退化,加深网络来提取高维抽象特征以及提高训练速度。考虑到数据有非零几率存在错误标签以及损坏数据,采用Log-Cosh作为损失函数来降低坏样本带来的负面影响。实验数据使用的是从LAMOST DR5中随机抽取的80 000条光谱,由于光谱质量等原因,每个光谱型的光谱数量不一。经过剔除坏值,流量归一化后,按7∶1∶2分为训练集、验证集和测试集。实验包括两个部分,第一个部分是使用数据集训练网络在光谱次型上进行类别预测,使用最大绝对误差、平均绝对误差以及标准差来比较不同形状卷积核的性能。将预测值作为横坐标,标签作为纵坐标,对测试集所有样本点使用二阶非线性拟合,得到了一条与y=x重合的直线。证明模型可以很好的预测光谱次型。第二部分是对模型进行内部分析,使用类别激活映射的方法分别研究了模型预测A,F,G和K四种类型光谱时所关注的主要特征,赋予了模型可解释性。在文中数据集上,该方法对91.4%的光谱预测误差在0.5个光谱次型以内,预测的平均绝对误差为0.3个光谱次型。并与非参数回归、Adaboost回归树、K-Means三种方法进行同数据集比较,结果表明文中提出的方法可以很好地预测光谱次型并且速度更快,准确率更高。  相似文献   

14.
结合X射线荧光光谱法,针对土壤中重金属元素Zn含量的预测问题,提出基于深度卷积神经网络回归预测模型。对原始土壤进行相关预处理,用粉末压片法制作土壤压片,采用X射线荧光光谱法(X-Ray-fluorescence,XRF)获取土壤光谱,相比于传统检测方式,XRF法具有检测速度快、精度高、操作简单、不破坏样品属性并且可实现多种重金属元素同时检测等优点,故将XRF与深度卷积神经网络相结合,实现对土壤中重金属Zn元素含量的精确预测。采用箱型图来剔除X射线荧光光谱中的异常数据,采用熵权法结合多元散射校正来对样品盒数据进行校正,采用Savitzky-Golay平滑去噪法以及线性本底法对光谱数据进行预处理,可以有效地解决由外界环境和人为因素产生的噪声及基线漂移等问题。针对卷积神经网络结构的特殊性,将获取的一维光谱数据向量,采用构建光谱数据矩阵的方式来进行处理,将同一浓度、同一含水率下5组平行光谱数据向量转化为二维光谱信息矩阵,以该矩阵作为深度卷积神经网络预测模型的输入,以适应卷积层的操作要求,利用深度卷积神经网络特殊的结构模式,能有效提取土壤光谱数据特征,提高了深度卷积神经网络预测模型的学习能力,降低模型的训练难度。深度卷积神经网络预测模型采用3层卷积层搭建,使用ReLU激活函数激活,采用最大池化方式,减少数据的维度,增加Dropout层,防止过拟合,使用ADAM优化器对预测模型进行优化。实验以平均相对误差(mean relative error, MRE)、损失函数(LOSS)、平均绝对误差(mean absolute error, MAE)确定了模型的最优学习率为10-3以及最优迭代次数为3000,并将深度卷积神经网络预测模型与BP预测模型、ELM预测模型、PLS预测模型进行对比,以均方误差(mean square error, MSE)、均方根误差(root mean square error, RMSE)、以及拟合系数R2来分析比较预测模型的好坏,结果表明,基于深度卷积神经网络预测模型在对土壤中重金属Zn元素含量预测方面优于BP,ELM,PLS三种预测模型,提高了预测精度。  相似文献   

15.
为减轻虫害对大豆的影响,首先使用相应的高光谱仪器进行样本采集,样本分为4类:包括带有微小虫卵的,带有幼虫的,有啃食痕迹的和完全正常的大豆各20颗;然后提出了一种基于三维图像检索(3D-R-D,3D Resnet18 DCH)的大豆食心虫的高光谱检测方法。该方法从视频检索的应用中得到启发,考虑到视频不同帧之间和高光谱不同层之间存在类比关系,使用了在大规模视频检索数据集下训练而成的分类模型,将它作为预训练3D卷积模型进行训练。和已知的文献方法相同,使用公开的光谱数据集进行正式训练和微调,从而得到能进行特征提取的3D卷积网络,用图像检索来实现间接分类,通过利用样本之间的特征距离,实现在全新类别上的分类。为能适应任务,将模型最后的分类层变成了图像检索常用的hash层,从而得到了代表特征的二进制码。该方法不但完成了对不同情况下大豆种类的检测,还解决了训练时样本不足的问题。为探寻一种好的相似度匹配损失函数,对比了多种较新的方法,最后发现使用融入柯西分布的损失函数,实验效果最佳,最终模型的分类精度达86%±1.00%,和在大豆食心虫检测上最新的小样本方法对比,3D-R-D方法提高了3.5%左右的精度,表明该方法是有效的,它也为结合高光谱检测相关研究提供了一种全新思路。  相似文献   

16.
近红外光谱(NIR)分析具有分析高效、样品无损、环境无污染以及可现场检测等优点,特别适合药品的快速建模分析。但NIR存在吸收强度弱以及谱带重叠等缺点,需要建立稳健可靠的化学计量学模型对其进行分析。深度卷积神经网络是深度学习方法中一个重要分支,它通过逐层抽取数据特征并进行组合、转换,形成更高层的语义特征,具有极强的建模能力,广泛应用于计算机视觉、语音识别等领域,而在药品NIR分析方面尚未见报道。基于深度卷积网络模型,对药品NIR多分类建模进行研究。针对药品NIR数据的特点,设计若干个面向多品种、多厂商药品NIR分类的一维深度卷积网络模型。模型中卷积层和池化层交叠排列用于逐层抽取NIR数据特征,输出层连接softmax分类器,对药品NIR数据进行分类概率预测。在输出层之前采用全局最大池化层,将特征图进行整体池化,形成一个特征点,用于解决全连接层存在的限制输入维度大小,参数过多的问题。同时,在网络模型中引入批处理操作和dropout机制,以防止梯度消失和减小网络过拟合的风险。在网络模型的设计过程中,通过设计不同的卷积网络层数以及不同的卷积核尺寸大小,分析其对建模效果的影响,同时分析五种经典数据预处理方法对NIR分析的影响。以我国7个厂商生产的头孢克肟片和11个厂商生产的苯妥英钠片样本NIR为实验对象, 建立药品的多品种、多厂商分类模型,该模型在二分类、多分类实验中取得了良好的分类效果。在十八分类实验中,当训练集与测试集比例为7∶3时,分类准确率为99.37±0.45,比SVM, BP, AE和ELM算法取得更优的分类性能。同时,深度卷积神经网络模型推理速度较快,优于SVM和ELM算法,但训练速度慢于二者。大量实验结果表明,深度卷积神经网络可对多品种、多厂商药品NIR数据准确、可靠地判别分类,且模型具有良好的鲁棒性和可扩展性。该方法也可推广到烟草、石化等其他领域的NIR数据分类应用中。  相似文献   

17.
天体光谱是天体物理学重要的研究对象,通过光谱可以获取天体的许多物理、化学参数如有效温度、金属丰度、表面重力加速度和视向速度等。白矮主序双星是一类致密的双星系统,对研究致密双星的演化特别是公共包层的演化有着重要的意义。国内外的大型巡天望远镜如美国斯隆望远镜以及中国的郭守敬望远镜,每天都产生大量光谱数据。如此海量的光谱数据无法完全用人工进行分析。因此,使用机器学习方法从海量的天体光谱中自动搜索白矮主序双星光谱,有着非常现实的意义。目前的光谱自动识别方法主要通过对已有的标签样本进行分析,通过训练得到分类器,再对未知目标进行识别。这类方法对样本的数量有明确的要求。白矮主序双星的实测光谱数量有限。若要通过有限的样本集准确学习白矮主序双星的光谱特征,不仅需要扩大样本数量,还需要提高特征提取和分类算法的精度。在前期工作中,通过机器学习等方法在海量巡天数据中识别了一批白矮主序双星的光谱,为该实验提供了数据源。使用对抗神经网络生成新的白矮主序双星光谱,扩大训练数据量至原数据集约两倍的数量,增强了分类模型的泛化能力。通过反贝叶斯学习修正损失函数,将损失函数的大小与样本的方差相关联,抑制了异常数据对模型造成的影响,提升了模型的鲁棒性,解决了由于训练样本集偏差带来的梯度消失以及训练陷入局部最优解等问题。该实验基于Tensorflow深度学习库。使用Tensorflow搭建的生成对抗网络具有较好的鲁棒性,并且封装了内部实现细节,使得算法得以更好地实现。除此之外,由Tensorflow搭建的卷积神经网络在该实验中用于分类准确度测试。实验结果表明,二维卷积神经网络能够利用卷积核有效地提取白矮主序双星的卷积特征并进行分类。基于反贝叶斯学习策略的卷积神经网络分类器在白矮主序双星原始数据及对抗神经网络生成光谱的识别任务中达到了约98.3%的准确率。该方法也可用于在巡天望远镜的海量光谱中搜索其他特殊和稀少天体如激变变星、超新星等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号