首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
针对传统深度残差网络在对高光谱图像进行特征提取和分类过程中因参数量大导致的训练时间长的问题,提出一种基于深度可分离卷积的轻量化残差网络模型(DSC-Res14)。该模型首先基于一层三维卷积层对经主成分分析方法降维后的高光谱影像进行光谱特征和空间特征初提取;其次,引入3个不同尺度的三维深度可分离卷积残差层对影像的深层语义特征进行提取,减少了网络训练参数量,增强了网络对高维、多尺度空间特征信息的表达能力。经在公开的Indian Pines和Pavia University标准数据集上进行实验验证,结果表明:所提模型在两个数据集上的分类精度分别为99.46%和99.65%;对比同类模型,所提模型在保证较高分类精度的同时,参数量和计算量小,训练时间短,并具有良好的鲁棒性。  相似文献   

2.
高光谱遥感影像分类通常基于地物光谱特征,但影像中同时还存在丰富的空间信息。空间信息的有效利用能显著提高图像分类效果。因其具有的特殊结构,卷积神经网络(CNN)已成功地应用在图像分类领域,对二维图像分类具有很好的效果。如何通过深度学习并结合空间光谱信息来提高分类性能是一个关键问题。结合高光谱影像中的空间特征与光谱信息,提出一种适合于高光谱像素级分类的深度学习三维卷积神经网络模型(3D-CNN),并在初始分类的基础上利用多标签条件随机场进行优化。选取三个通用公开高光谱数据集(Indian Pines数据集、Pavia University数据集、Pavia Center数据集)进行测试,结果表明分类优化后精度得到很大提升,总体精度可达98%,Kappa系数达到97.2%。  相似文献   

3.
基于扩张卷积注意力神经网络的高光谱图像分类   总被引:1,自引:0,他引:1  
《光学学报》2021,41(3):43-53
为了解决训练样本有限情况下高光谱图像分类精度低的问题,提出了一种结合扩张卷积与注意力机制的三维-二维串联卷积神经网络模型。首先,该模型以串联的三维-二维卷积神经网络作为基础结构,利用三维卷积同时提取高光谱图像的空谱特征,并采用二维卷积进一步提取高级空间语义信息;然后,通过引入扩张卷积增大卷积核感受野,构建了多尺度特征提取结构,实现了多尺度特征的融合;最后,利用注意力机制使网络关注重要的空谱特征,并抑制噪声和冗余信息。在两个常用数据集上对本文算法和四种基于深度学习的分类算法进行对比实验,结果表明,所提模型取得了最准确的分类结果,有效提高了训练样本有限条件下的分类精度。  相似文献   

4.
《光学学报》2021,41(7):47-55
高光谱与全色影像融合旨在通过融合高空间分辨率的全色影像与低空间分辨率的高光谱影像来获得高空间分辨率的高光谱影像。基于深度卷积神经网络(CNN),提出了一种遥感影像融合方法,利用两个独立的分支网络逐级从高光谱和全色影像中提取光谱和空间特征。该融合网络由两个分支网络和一个主线网络组成,利用两个分支网络分别从高光谱与全色影像中提取空谱特征,主线网络基于分支网络提取的特征,重建得到最终融合的高空间分辨率的高光谱影像。在CAVE和Pavia Center数据集上分别进行了实验验证,通过对比可以发现,所提出的融合算法在空间细节和光谱保真度上较当前主流算法均表现出更优异的性能。  相似文献   

5.
《光子学报》2021,50(9)
传统卷积神经网络模型在高光谱图像分类生成特征图的空间维度中存在大量的空间特征信息冗余,而且把高光谱图像单个像元上的光谱带数据看作是无序高维向量进行数据处理,并不符合光谱数据的特性,极大影响了模型的运行效率和分类性能。针对该问题,提出一种三维Octave卷积和双向循环神经网络注意力网络相结合的高光谱图像分类方法。首先,利用三维Octave卷积获取高光谱图像的空间特征的同时减少空间特征冗余信息。其次,利用Bi-RNN光谱注意力网络将光谱带数据视为有序序列以获取高光谱图像的光谱信息。然后,通过全连接层将空间和光谱特征图连接起来实现特征融合。最后,经过softmax输出分类结果。实验结果表明,所提方法在Pavia University和Botswana两个数据集上的分类精度分别达到了99.97%和99.79%,与其他主流算法相比,该方法可以充分利用空间和光谱特征信息,具有更佳的分类性能。  相似文献   

6.
名优大米含有更多的营养价值与更高的经济价值,不法商家为赚取更多利益,对优质大米掺假甚至以次充好,损害了消费者利益和大米贸易,打击了生产者的生产积极性。希望发展一种基于高光谱成像的图谱特征与深度学习网络的名优大米无损鉴别方法。首先,采集了全国具有代表性的七种名优大米400~1 000 nm范围高光谱图像,并提取了每种大米的光谱、纹理与形态特征。使用多元散射校正算法做光谱预处理消除光谱散射。连续投影算法(SPA)、竞争自适应重加权算法(CARS)以及两者级联方法(CARS-SPA)被用来选取光谱特征的重要波长;用SPA选择形态、纹理特征的重要变量。最后,使用深度学习网络-卷积神经网络(CNN)融合各类特征构建大米种类识别模型,而K-近邻(KNN)、随机森林(RF)用于与CNN模型相对比。实验结果显示,根据全光谱构建的模型的分类准确度达到80%以上;其中, KNN建模效果最差; RF的效果较好; CNN网络的模型性能最优,训练集的分类准确度(ACC_T)为92.96%,预测集的分类准确度(ACC_P)为89.71%。而重要波长光谱与全光谱相比,分类准确度相差较多。为进一步提升大米种类鉴别的准确度,选用纹理、形态两种图像特征与光谱特征进行融合,最优结果来自光谱与形态特征重要变量所构建的模型。其中, KNN的ACC_T和ACC_P分别为69%和67%; RF模型的ACC_T=99.98%和ACC_P=89.10%; CNN模型的效果最佳, ACC_T和ACC_P为97.19%和94.55%。此外,光谱与纹理融合的分类效果差于光谱,说明纹理特征弱化了分类结果。对于分类模型来说, CNN的性能明显优于两种机器学习方法,可以提供更好的分类效果。总而言之, CNN融合光谱与形态特征重要变量可实现对名优大米种类的准确鉴别,这种方法有望拓展到其他农产品的分级,种类区分和产地鉴别。  相似文献   

7.
3D卷积自动编码网络的高光谱异常检测   总被引:1,自引:0,他引:1  
高光谱图像包含丰富的地物光谱信息,在遥感图像领域有着巨大的发展前景。高光谱图像异常检测无需任何先验光谱信息,便可检测出图像中的异常目标。因此,在国防军事和民用领域都有广泛的应用,是现阶段高光谱图像处理领域的研究热点。然而,高光谱图像存在数据复杂、冗余性强、未标记以及样本数量少等特点,这给高光谱图像异常检测带来了很大的挑战。尤其是在深度学习中,往往需要大量的图像数据作为训练样本,这对高光谱图像来说很难获得。针对现有大多数算法对高光谱图像自适应性不强和空间-光谱信息利用不足的问题,提出一种基于3D卷积自动编码网络的高光谱异常检测算法,可以在少量训练数据的前提下,有效利用高光谱图像信息,学习更加有判别性的特征表达,提高检测精度。首先,通过3D卷积、3D池化和3D归一化等步骤设计3D卷积网络,进而提取高光谱图像的空间-光谱结构特征。然后,将3D卷积网络和3D反卷积网络分别嵌入自动编码网络的编码器和解码器,通过最小化结合均方差和光谱角距离的重构误差进行背景重构。最后,利用原始高光谱图像待测像元与重构的背景图像之间的马氏距离进行异常检测。该算法可以在无先验信息的情况下,自动训练网络中的所有参数,以无监督的方式学习高光谱图像的有效特征并进行背景重构。为证明算法的有效性,利用截取来自三组真实高光谱数据集的九个图像进行异常检测,并与RX,SRX,CRD,UNRS和LRASR五种算法进行对比。结果表明,与现有的其他算法相比,该算法可以在复杂程度不同的高光谱图像背景下可以保持较高的检测效果和准确率。  相似文献   

8.
赵春晖  李彤  冯收 《光子学报》2021,50(3):148-158
针对常规的高光谱图像分类算法不能很好地解决不同图像中的频谱偏移的问题,提出了一种基于密集卷积和域自适应的高光谱图像分类算法,首先在源域中使用密集卷积进行深度特征学习,然后应用域自适应技术转移到目标域。目前的域自适应高光谱图像分类框架中常用卷积神经网络进行特征学习,但是当深度增加时会出现因梯度消失而导致分类精度下降的情况,因此本文通过引入密集卷积进行深度特征学习,提高域自适应高光谱图像分类的精度。在Indiana高光谱数据集和Pavia高光谱数据集上验证所提算法的有效性,整体分类精度分别为61.06%和89.63%,与其他域自适应高光谱图像分类方法对比,所提方法具有更好的分类精度。  相似文献   

9.
国强  彭龙 《光学学报》2021,41(22):56-63
高光谱遥感数据具有详细的地物光谱与空间信息.针对高光谱数据空间信息在以往分类方法中未得到充分利用而导致鲁棒性与分类精度较低的问题,提出了一种改进的超像素分割与三维卷积神经网络分类方法.该方法首先通过超像素分割与模糊聚类对高光谱遥感数据进行区域分割,再使用三维卷积神经网络对得到的区域分割结果与高光谱数据形成的空-谱联合数据进行训练与分类.通过对空间区域进行划分融合,所提方法提升空间信息在分类中的作用,减小"同物异谱"现象对分类的影响,同时引入三维卷积神经网络对空-谱联合数据进行训练与分类,提升了高光谱分类精度.所提方法在Pavia University和Salinas数据集的总体准确率为97.53%和98.48%,与各对照实验相比,具有更为良好的分类效果,验证了所提方法的有效性.  相似文献   

10.
针对哈密瓜表面农药残留化学检测方法成本高且具有破坏性等问题,探索了可见-近红外(Vis-NIR)光谱技术对农药残留定性判别的可行性。以哈密瓜为载体,百菌清和吡虫啉农药为研究对象,采集哈密瓜表面无残留、百菌清和吡虫啉残留的可见-近红外漫反射光谱,利用格拉姆角场(GAF)将一维光谱数据转换为二维彩色图像,构建GAF图像数据集。设计一种包含Inception结构的多尺度卷积神经网络模型用于哈密瓜表面农药残留种类判别,包括1层输入层、3层卷积层、1层融合层、1层平坦层、2层全连接层和1层输出层。模型测试混淆矩阵结果表明,格拉姆角差场(GADF)变换对哈密瓜表面农药残留的可见-近红外光谱表达能力较强。此外,构建AlexNet、VGG-16卷积神经网络(CNN)模型和支持向量机(SVM)、极限学习机(ELM)机器学习模型与提出的多尺度CNN模型进行性能对比。结果表明,3种CNN模型对哈密瓜表面有无农药残留的判别效果较好,综合判别准确率均高于SVM和ELM模型。对比3种CNN模型性能,多尺度CNN模型的性能最佳,训练耗时为14 s,综合判别准确率为98.33%。多尺度CNN模型结构利用多种小尺寸滤波器组合(1×1,3×3和5×5)和并行卷积模块,能够捕获不同层次和尺度的特征,通过级联融合模式进行深度特征融合,提高了模型的特征提取能力。与传统深度CNN模型相比,在保证计算复杂度不变的情况下,多尺度CNN模型的精度得到了有效提高。实验结果表明,GADF变换结合多尺度CNN模型可以有效进行光谱数据解析,利用可见-近红外光谱技术可以实现哈密瓜表面农药残留的定性判别。研究结果为大型瓜果表面农药残留的快速无损检测技术的研发提供了理论参考。  相似文献   

11.
Automatic modulation recognition (AMR) can be used in dynamic spectrum access (DSA) techniques to reduce the pressure on spectrum resources. In this paper, we propose a multiscale convolution-based network model called MSNet-SF, which combines traditional statistical features and deep learning (DL) to balance recognition accuracy and complexity. In the model, the feature information is extracted by two multiscale modules, which consist of unit convolution and three different sizes of convolution kernels arranged in parallel. Additionally, the sparse connectivity of unit convolution enables the network to be more lightweight. Five statistical features (four higher-order cumulants (HOCs) and one zero-centered normalized instantaneous magnitude tightness) are also input into the model and are fully fused with the main feature map by multiplication to achieve complementarity of long-term and short-term features. This approach yields a large performance gain at a small cost and greatly reduces the confusion between QAM16 and QAM64. Simulation results in the RML2018.10A dataset show that the average recognition accuracy of the model improved by 4% after adding the statistical features and achieved an accuracy of more than 97% from 12 dB.  相似文献   

12.
Many remote sensing image classifiers are limited in their ability to combine spectral features with spatial features.Multi-kernel classifiers,however,are capable of integrating spectral features with spatial or structural features using multiple kernels and summing them for final outputs.Using a support vector machine(SVM) as classifier,different multi-kernel classifiers are constructed and tested using 64-band Operational Modular Imaging Spectrometer II hyperspectral image of Changping Area,Beijing City.Results show that by integrating spectral and wavelet texture information,multi-kernel SVM classifiers can obtain more accurate classification results than sole-kernel SVM classifiers and cross-information SVM kernel classifiers.Moreover,when the multi-kernel SVM classifier is used,the combination of the first four principal components from principal component analysis and wavelet texture provides the highest accuracy(97.06%).Multi-kernel SVM is therefore an effective approach to improve the accuracy of hyperspectral image classification and to expand possibilities for remote sensing image interpretation and application.  相似文献   

13.
针对单一的滤波器提取高光谱图像空间纹理信息时不能获得完整的图像特征的不足,提出一种结合双边滤波和域转换标准卷积滤波的高光谱图像分类算法.该方法采用空间信息自适应融合的分类寻优,先对高光谱波段进行抽样分组,再用双边滤波和域转换标准卷积滤波对分组后的波段进行滤波,两种空间信息进行线性融合后交由支持向量机完成分类.实验表明,相比使用光谱信息、高光谱降维、空谱结合的支持向量机分类方法和边缘保持滤波以及递归滤波的方法,本文所提算法对高光谱图像的分类精度有较大提高,在训练样本仅为5%和3%的情况下,对印第安农林和帕维亚大学图像的总体分类精度分别达到了96.95%和97.89%,比其他算法高出213个百分点,验证了该方法在高光谱图像分类的有效性.  相似文献   

14.
恒星光谱自动分类是研究恒星光谱的基础内容,快速、准确自动识别、分类恒星光谱可提高搜寻特殊天体速度,对天文学研究有重大意义。目前我国大型巡天项目LAMOST每年发布数百万条光谱数据,对海量恒星光谱进行快速、准确自动识别与分类研究已成为天文学大数据分析与处理领域的研究热点之一。针对恒星光谱自动分类问题,提出一种基于卷积神经网络(CNN)的K和F型恒星光谱分类方法,并与支持向量机(SVM)、误差反向传播算法(BP)对比,采用交叉验证方法验证分类器性能。与传统方法相比CNN具有权值共享,减少模型学习参数;可直接对训练数据自动进行特征提取等优点。实验采用Tensorflow深度学习框架,Python3.5编程环境。K和F恒星光谱数据集采用国家天文台提供的LAMOST DR3数据。截取每条光谱波长范围为3 500~7 500 部分,对光谱均匀采样生成数据集样本,采用min-max归一化方法对数据集样本进行归一化处理。CNN结构包括:输入层,卷积层C1,池化层S1,卷积层C2,池化层S2,卷积层C3,池化层S3,全连接层,输出层。输入层为一批K和F型恒星光谱相同的3 700个波长点处流量值。C1层设有10个大小为1×3步长为1的卷积核。S1层采用最大池化方法,采样窗口大小为1×2,无重叠采样,生成10张特征图,与C1层特征图数量相同,大小为C1层特征图的二分之一。C2层设有20个大小为1×2步长为1的卷积核,输出20张特征图。S2层对C2层20张特征图下采样输出20张特征图。C3层设有30个大小为1×3步长为1的卷积核,输出30张特征图。S3层对C3层30张特征图下采样输出30张特征图。全连接层神经元个数设置为50,每个神经元都与S3层的所有神经元连接。输出层神经元个数设置为2,输出分类结果。卷积层激活函数采用ReLU函数,输出层激活函数采用softmax函数。对比算法SVM类型为C-SVC,核函数采用径向基函数,BP算法设有3个隐藏层,每个隐藏层设有20,40和20个神经元。数据集分为训练数据和测试数据,将训练数据的40%,60%,80%和100%作为5个训练集,测试数据作为测试集。分别将5个训练集放入模型中训练,共迭代8 000次,每次训练好的模型用测试集进行验证。对比实验采用100%的训练数据作为训练集,测试数据作为测试集。采用精确率、召回率、F-score、准确率四个评价指标评价模型性能,对实验结果进行详细分析。分析结果表明CNN算法可对K和F型恒星光谱快速自动分类和筛选,训练集数据量越大,模型泛化能力越强,分类准确率越高。对比实验结果表明采用CNN算法对K和F型恒星光谱自动分类较传统机器学习SVM和BP算法自动分类准确率更高。  相似文献   

15.
建立权重独立的双通道残差卷积神经网络,对可见光与红外频段下的目标图像进行特征提取,生成多尺度复合频段特征图组。基于像点间的欧式距离计算双频段特征图显著性,根据目标在不同成像频段下的特征贡献值进行自适应融合。通过热源能量池化核与视觉注意力机制,分别生成目标在双频段下的兴趣区域逻辑掩码并叠加在融合图像上,凸显目标特征并抑制非目标区域信息。以端到端识别网络作为基础,利用交叉损失计算策略,对含有注意力掩码的多尺度双频段融合特征图进行目标识别。结果表明,所设计的识别网络能够有效地融合目标红外热源物理特征和可见光图像纹理特征,提高了信息融合深度,保留目标热辐射与纹理特征的同时降低了背景信息干扰,对全天候复杂环境下的多尺度热源目标具有良好的识别精度与鲁棒性。  相似文献   

16.
高光谱图像具有波段连续、维数高、数据量大、相邻波段相关性强的特点,可为地物分类提供更为丰富的细节信息。但是,数据中存在大量冗余信息与噪声,在图像分类中如直接利用其所有波段特征而不进行有效分析与选择,将会导致较低的计算效率和较高的计算复杂度,分类精度亦可能随着波段维数增加而出现先增后减的“休斯(Hughes)现象”。为快速地从高达数十个甚至数百个波段的高光谱图像中提取出具有较好识别能力的特征子集,从而避免“维度灾难”,将过滤式ReliefF算法和封装式特征递归消除算法(RFE)相结合,构建了ReliefF-RFE特征选择算法,可用于高光谱图像分类的特征选择。该算法根据权重阈值,利用ReliefF算法快速剔除大量无关特征,缩小并优化特征子集的范围;利用RFE算法进一步搜索最优特征子集,将缩小范围后的特征子集中与分类器关联性小、冗余的特征进行递归筛选,进而得到分类性能最佳的特征子集。采用Indian pines数据集、Salinas-A数据集与KSC数据集等3个标准数据集作为实验数据,将ReliefF-RFE算法的应用效果与ReliefF和RFE算法进行对比。结果显示,在3个数据集中,应用ReliefF-RFE算法的高光谱图像分类平均总体精度(OA)为92.94%、F-measure为92.81%,Kappa系数为91.94%;ReliefF-RFE算法的平均特征维数是ReliefF算法的37%,而平均运算时间则是RFE算法的75%。由此表明,ReliefF-RFE算法能够在保证分类精度的同时,克服过滤式ReliefF算法无法有效减小特征之间冗余以及封装式RFE算法时间复杂度较高的缺陷,具有更为均衡的综合性能,适用于高光谱图像分类的特征选择。  相似文献   

17.
为提高光谱伪装目标图像分类精度,提出了一种基于局部Gabor二进制模式(LGBP)的空间分类方法。LGBP作为一种多尺度算法,被用来提取高光谱图像的纹理特征。然后高光谱图像中的每一个像元可以用一个光谱特征向量及一个纹理特征向量表示。通过这种方法,增大类间距离。最后使用多核支持向量机结合光谱信息和空间纹理信息实现对高光谱伪装目标图像的分类。实验证明了该方法的有效性,分类总体精度和Kappa系数分别达到了95.6%和0.937。所提出的方法对于提高分类精度及鲁棒性具有重要意义。  相似文献   

18.
根据高光谱遥感图像的特点及二维Gabor滤波器纹理分割的原理,提出了一种基于三维Gabor滤波器的高光谱遥感图像分类方法。三维Gabor滤波器能够对高光谱遥感图像所有波段同时进行滤波,将大量的图像信息抽取为少量的不同尺寸、方向和波谱的响应,极大减少了高光谱遥感图像纹理信息提取的计算量。利用不同方向和尺寸的三维Gabor滤波器对祁连山黑河流域上游地区的Hyperion影像全波段进行滤波处理,获取26个纹理响应特征,并分析不同纹理对不同地物的区分度。利用自动子空间划分的波段指数(BI)进行波段选择,选取不同的波段组合进行试验,寻找最佳降维幅度。按照纹理对不同地物响应的区分度逐一加入三维Gabor纹理特征,利用三维Gabor纹理辅助光谱信息,运用支持向量机(SVM)的方法进行监督分类。结果表明,基于三维Gabor纹理和自动子空间BI波段选择的SVM分类方法能够在有效降低光谱维数的同时,提高高光谱遥感图像分类的精度和效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号