首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tensorial formalism adapted to the case of the X2Y4 molecules with D2h symmetry has been developed in the same way as in the previous works on XY4 (Td) and XY6 (Oh) spherical tops and XY5Z (C4v) symmetric tops. Here, we use the O(3)⊃D2h group chain. All the coupling coefficients and formulas for the computation of matrix elements are given for this chain and used in the case of the Hamiltonian and transition moment operators.  相似文献   

2.
T1ρ imaging is useful in a number of clinical applications. T1ρ preparation methods, however, are sensitive to non-uniformities of the B0 magnetic field and the B1 RF field. These common system imperfections can result in image artifacts and quantification errors in T1ρ imaging. We report on a phase-cycling method which can eliminate B1 RF inhomogeneity effects in T1ρ imaging. This method does not only correct for image artifacts but also for T2ρ contamination caused by B1 RF inhomogeneity. The presence of B0 magnetic field inhomogeneity can compromise the effectiveness of this method for B1 RF inhomogeneity correction. We demonstrate that, by combining the spin-locking scheme reported by Dixon et al. (Myocardial suppression in vivo by spin locking with composite pulses. Magn Reson Med 1996; 36:90-94) with phase cycling, we can simultaneously correct B0 magnetic field inhomogeneity effects and B1 RF inhomogeneity effects in T1ρ imaging. Phantom and in vivo data sets are used to demonstrate the proposed methods and to compare them with other existing T1ρ preparation methods.  相似文献   

3.
Structural, electronic properties and relative stability of quasi-two-dimensional (2D) free-standing planar nano-block (NBs) structures Tin+1Al0.5Cn and Tin+1Cn (n = 1 and 2), which can be prepared using the recently developed procedure of exfoliation of corresponding NBs from MAX phases, were examined within first principles calculations in comparison with parent MAX phases Ti3AlC2 and Ti2AlC. We found that in general Tin+1Cn and Tin+1Al0.5Cn NBs retain the atomic geometries of the corresponding blocks of the MAX phases, but some structural distortions for the NBs occur owing to the lowering of the coordination number for atoms in the external Ti sheets of the nano-block structures. Our analysis based on their cohesive and formation energies reveals that the stability of the nano-block structures increases with index n (or, in other words, with a growth of the number of Ti–C bonds), the Al-containing NBs becoming more stable than the “pure” Ti–C NBs. Our data show that the magnetization of the simulated planar nano-block structures can be expected; so, for the Ti3C2 nano-block the most stable will be the spin configuration, where within each external Ti sheet the spins are coupled ferromagnetically together with antiferromagnetic ordering between opposite external titanium sheets of this nano-block.  相似文献   

4.
Ca0.54Sr0.34−1.5xEu0.08Smx(MoO4)y (WO4)1−y red phosphors were prepared by solid-state reaction using Na+ as a charge compensator for light-emitting diodes (LED). The effects of Na+ concentration, synthesis temperature, reaction time and Eu3+ concentration were studied for the properties of luminescence and crystal structure of red phosphors. The results show that the optimum reaction condition is 6%, 900 °C, 2 h and 8%. The photoluminescence spectra show that red phosphors are effectively excited at 616 nm by 292, 395 and 465 nm. The wavelengths of 465 nm nicely match the widely applied emission wavelengths of blue LED chips.  相似文献   

5.
The spectrum of the ν7 band of cis-ethylene-d2 (cis-C2H2D2) has been recorded with an unapodized resolution of 0.0063 cm−1 in the 740-950 cm−1 region using a Bruker IFS 125 HR Fourier transform infrared spectrometer. By fitting 2186 infrared transitions of ν7 with a standard deviation of 0.00060 cm−1 using a Watson’s A-reduced Hamiltonian in the Ir representation, accurate rovibrational constants for ν7 = 1 state have been derived. The band center of ν7 has been found to be 842.20957 ± 0.00004 cm−1. In a simultaneous fit of 1331 infrared ground state combination differences from the present ν7 transitions, together with 22 microwave frequencies, ground state constants have been improved. The rms deviation of the ground state fit was 0.00027 cm−1.  相似文献   

6.
KGd1−x(WO4)2−y(MoO4)y:Eu3+x(0.1?x?0.75, y=0 and 0.2) phosphors are synthesized through traditional solid-state reaction and their luminescent properties in ultraviolet (UV) and vacuum ultraviolet (VUV) regions are investigated. Under 147 nm excitation, these phosphors show characteristic red emission with good color purity. In order to improve their emission intensity, the MoO42− (20 wt%) is introduced into the anion of KGd1−x(WO4):Eu3+x. The Mo6+ and Eu3+ co-doped KGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped KGd(WO4)2 in VUV region. The chromaticity coordination of KGd0.45(WO4):Eu3+0.55 is (x=0.669, y=0.331), while that of KGd0.45(WO4)1.8(MoO4)0.2:Eu3+0.55 is (x=0.666, y=0.334) in VUV region.  相似文献   

7.
The electronic structures of Fe-based superconductor SmFeAsO1−xFx and SmFe1−yIryAsO are compared through X-ray photoemission spectroscopy in this study. With fluorine or iridium doping, the electronic structure and chemical environment of the SmFeAsO system were changed. The fluorine was doped at an oxygen site which introduced electrons to a reservoir Sm–O layer. The iridium was doped at an Fe site which introduced electrons to a conduction Fe–As layer directly. In a parent material SmFeAsO, the magnetic ordering corresponding to Fe3d in the low-spin state is suppressed by both fluorine and iridium doping through suppressing the magnetism of 3d itinerant electrons. Compared to fluorine doping, iridium doping affected superconductivity more significantly due to an iridium-induced disorder in FeAs layers.  相似文献   

8.
The spectral and kinetic parameters of M1−xCexF2+x (x=0.35, M=Ca, Sr, Ba) crystals luminescence have been studied. These characteristics are compared to the luminescence of solution base hosts: MF2:Ce and CeF3. The emission bands of heavily Ce-doped alkali earth fluorides are closed to the spectrum of perturbed Ce-center in CeF3 at T=9 K. Luminescence of M0.65Ce0.35F2.35 crystals reveals the efficient excitation in the UV and VUV ranges. The main feature of the emission and excitation spectra of Ce3+ luminescence is the displacement to the low-energy range according to the bandgap decrease in the Ca-, Sr- and Ba-based fluorides, respectively. Small Stokes shift leads to the reabsorption and light yield decrease. Luminescence peculiarities of M1−xCexF2+x solid solution and the role of Ce-enriched inclusions are discussed.  相似文献   

9.
This paper reports for the first time both, an experimental observation and theoretical calculations of the K2 43Δg state. For the experiment we used cw perturbation-facilitated optical-optical double resonance (PFOODR) spectroscopy. A single mode Ti-sapphire laser and a dye laser served as the pump and probe lasers, respectively. A total of 55 PFOODR signals have been assigned to the 43Δg ← b3Πu transitions. Absolute vibrational numbering was determined by using quantum defect analysis combined with comparing observed intensities with calculated Franck-Condon factors (FCF). For the former we used known parameters from the 23Δg state since the 23Δg and the 43Δg states belong to the same Rydberg series. We report here our experimental and calculated spectroscopic constants, the corresponding RKR potential energy curve, the Franck-Condon table for the 43Δg ↔ b3 Πu system, as well as a comparison with the theoretical potential energy curve. The Te value is found to be 28408.938(52) cm−1.  相似文献   

10.
Intense red phosphors, AgGd1−xEux(W1−yMoy)2O8 (x=0.0-1.0, y=0.0-1.0), have been synthesized through traditional solid-state reaction and characterized by X-ray diffraction (XRD) and photoluminescence (PL). XRD results reveal that AgGd1−xEuxW2O8 synthesized at 1000 °C has a tetragonal crystal structure, which is named as high temperature phase (HTP) AgGdW2O8. All phosphors compositions with Eu3+ show red and green emission on excitation either in the charge-transfer or Eu3+ levels. Analysis of the emission spectra with different Eu3+ concentrations reveal that the optimum dopant concentration for Eu3+ is x=0.6 in the HTP AgGd1−xEuxW2O8 (x=0.0-1.0). Studies on the AgGd0.4Eu0.6(W1−yMoy)2O8 (y=0.0-1.0) and AgGd1−xEux(W0.7Mo0.3)2O8 (x=0.0-1.0) show that the emission intensity is maximum for compositions with y=0.3 and x=0.5, respectively, and a decrease in emission intensity is observed for higher y or x values. The Mo6+ and Eu3+ co-doped AgGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped AgGd(WO4)2 in UV region. The intense emission of the tungstate/molybdate phosphors under 394 and 465 nm excitations, respectively, suggests that these materials are promising candidates as red-emitting phosphors for near-UV/blue GaN-based white LED for white light generation.  相似文献   

11.
A high-resolution (0.002 cm−1) infrared absorption spectrum of methylene fluoride-d2 (CD2F2) of the lowest fundamental mode ν4 in the region from 460 to 610 cm−1 has been measured on a Bruker IFS 120-HR Fourier transform infrared spectrometer. More than 3500 transitions have been assigned in this B-type band centered at 521.9 cm−1. The data have been combined with upper state pure rotational measurements in a weighted least-squares fit to obtain molecular constants for the upper state resulting in an overall standard deviation of 0.00018 cm−1. Accurate value for the band origin (521.9578036 cm−1) has been obtained and inclusion of transitions with very high J (?60) and Ka (?34) values has resulted in improved precision for sextic centrifugal distortion constants, in particular DK, HKJ, and HK.  相似文献   

12.
Phase contrast (PC)-based MRI methods are considered to be the most accurate approach for spatially resolved flow quantification, but the measurement of very slow velocities requires signal detection at long echo times and the application of strong field gradients. On the other hand, measurements based on time-of-flight or inflow effects can be conducted at short echo times and without flow-encoding gradients. A method for imaging flow at velocities of the order of 0.1 mm/s is presented and validated here. It consists of measuring the apparent spin-lattice relation rate (R1*) of the flowing fluid using magnetization preparation by alternating slice-selective and nonselective inversion pulses (FAIR or flow-sensitive alternating inversion recovery) and a fast gradient-echo detection sequence. This method is appropriate for the quantitative imaging of slow flow at low Reynolds numbers in fluids where the T2 values are too short to allow sensitive flow measurements by phase contrast-based methods.  相似文献   

13.
Nominal composition of (ZnO)1−x(MnO2)x (0.005≤x≤0.2) ceramics have been prepared by the standard solid-state reaction method in three different sintering atmospheres: Ar, air, and reductive atmosphere. The effect of sintering atmosphere on the electron spin resonance (ESR), negative temperature coefficient of resistivity (NTCR), and photoluminescence (PL) properties of (ZnO)1−x(MnO2)x ceramics has been investigated in detail. The results demonstrate that the sintering atmosphere has significant effects on the ESR signals of (ZnO)1−x(MnO2)x; the NTCR of the samples sintered in air is larger than those sintering in Ar and reductive atmosphere; the deep-level PL related to oxygen vacancy increases when sintered in the reductive atmosphere.  相似文献   

14.
In order to elucidate the anisotropic pressure effect on superconductivity in an iron-based superconductor, magnetization measurements have been performed in Ba(Fe0.92Co0.08)2As2 single crystals under uniaxial pressures applied along the c-axis. Gigantic Tc suppression, dTc/dP//c = −15 K/GPa, was observed when the anisotropic deformation with the a-expansion and c-compression was induced by the c-pressure, which should be compared with dTc/dP < +1 K/GPa in the isotropic pressure case. This suggests that the a-axis (c-axis) compression has a positive (negative) contribution to Tc.  相似文献   

15.
The infrared spectrum of DNO3 (deuterated nitric acid) was recorded at high resolution (0.0027 cm−1) in the 700-1400 cm−1 region on a Bruker IFS 120 HR Fourier transform spectrometer. The analysis of the ν5 band of DNO3 centred at 887.657 cm-1 which is mostly an A-type band, was performed making use of the ground state parameters achieved by Drouin et al. [Drouin BJ, Miller CE, Fry JL, Petkie DT, Helminger P, Medvedev IR. J Mol Spectrosc 2006;236:29-34]. The ν5 fundamental band is strongly perturbed because of the existence of the ν7+ν9 dark combination band at 882.21  cm-1. The 51 and 7191 energy levels of DNO3 are coupled through A and B type Coriolis resonances, and as a consequence, numerous lines from the ν7+ν9 dark combination band could be identified also. In this way about 1070 and 75 energy levels of the 51 and 7191 vibrational states, respectively, were satisfactorily reproduced by the energy levels calculation which account for the observed resonances. A reasonable estimation of the absolute line intensities for the ν5 band of DNO3 was performed using the ν5 transition operator from H14NO3. The spectrum also features the ν5+ν6ν6, ν5+ν7ν7 and ν5+ν9−ν9 hot bands located at 881.03, 882.61 and 884.45 cm−1, respectively.  相似文献   

16.
A low temperature (1100 °C) process of preparing F-doped SmFeAsO samples has been developed using SmF3 with nanometer scale as the source of fluorine. A series of the SmFeAsO1−xFx (= 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) samples have been prepared using the present method. Compared with previous reports, the present SmF3 is more effective to introduce F into SmFeAsO system in which a transition temperature of 39 K can be observed when = 0.05. The superconductivity is definitely enhanced with the increasing F-doping level. All the samples presented to be layered structure and the crystal particle size is about three times larger with sintering time increasing from 36 h to 48 h. Except for the nanometer scale of SmF3, the flux effect of SmF3 is recognized to be another reason for the decrease of the sintering temperature. Further more, a relatively large amount of SmF3 was also employed in the raw materials to introduce excessive F and this has induced higher Tc (55 K) in SmFeAsO0.8F0.2+δ system.  相似文献   

17.
In this paper, a false color image fusion method for merging visible and infrared images is proposed. Firstly, the source images and reference image are decomposed respectively by Laplacian pyramid transform. Then the grayscale fused image and the difference images between the normalized source images are assigned to construct YCBCR components. In the color transfer step, all the three channels of the color space in each decomposition level are processed with the statistic color mapping according to the color characteristics of the corresponding sub-images of the reference image. Color transfer is designed based on the multi-resolution scheme in order to significantly improve the detailed information of the final image, and to reduce excessive saturation phenomenon to have a comparatively natural color appearance compared with the classical global-coloring algorithm. Moreover, the differencing operation between the normalized source images not only provides inter-sensor contrast to make popping the potential targets but also weakens the influence of the ambient illumination variety to a certain degree. Finally, the fused results and several metrics for evaluation of fused images subjectively and objectively illustrate that the proposed color image fusion algorithm can yield a more complete mental representation of the perceived scene, resulting in better situational awareness.  相似文献   

18.
Multiecho T2 relaxation measurements to determine geometric mean T2 (GMT2) and myelin water fraction (MWF) are lengthy, resulting in increased motion artefacts from patient discomfort and reduced patient compliance. The goal of this study was to shorten the acquisition time for multiecho T2 measurements without affecting T1 weighting by varying TR across k-space. Six phantoms and 10 healthy volunteers were imaged with both a constant TR and a variable TR multiecho T2 sequence. T1 weighting was determined by TR at the center of k-space; for variable TR measurement, TR was shortened linearly from the center to the edges of k-space. Phantoms showed excellent agreement for proton density and GMT2 between constant and variable TR measurements. No significant differences were found in proton density or MWF for any of the brain structures between the two measurements. The average GMT2 over all structures between the two experiments was not significantly different. In summary, with the variable TR approach, scan time was reduced by >20%, with minimal loss of image resolution and no significant affect on proton density, MWF or GMT2.  相似文献   

19.
Alkaline-earth silicate phosphors CaMgSi2xO6+2x:Eu2+ (1.00?x?1.20) were prepared by traditional solid-state reaction. The phosphors showed an intense blue emission centered around 453 nm, with both 254 and 147 nm excitations. The host absorption below 200 nm in the excitation spectra consisted of two bands around 160 and 190 nm. The band around 160 nm was ascertained to be associated with the SiO4-tetrahedra and MgO6-polyhedra, and that around 190 nm was due to the CaO8-polyhedra or some impurities. The incorporation of excess Si of less than 15% would not lead to formation of impurities and the results indicated that an appropriate Si excess could improve the Photoluminescence (PL) intensity in both ultraviolet (UV) and vacuum ultraviolet (VUV) regions  相似文献   

20.
Single-phase M-type hexagonal ferrites Sr1−xLaxFe12O19 (0≤x≤1) were prepared by a ceramic route. The stability limits of the ferrite phases were determined with a combination of various microscopy techniques, electron-probe micro-analysis, powder X-ray diffraction and thermal analysis. SrFe12O19 (x=0) is stable up to 1420 °C, whereas LaFe12O19 (x=1) exists between 1360 and 1400 °C only. The lattice parameters of Sr1−xLaxFe12O19 exhibit a linear variation with x, i.e. a0 slightly increases and c0 decreases with x, leading to a decrease of the unit cell volume with x. The saturation magnetization at T=5 K decreases with increasing La concentration. Room temperature Mössbauer analysis shows that the Fe3+/Fe2+ valence change occurs in the 2a sites for the whole composition range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号