首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A brief review is given regarding the application of cluster ion beams as desorption probes in molecular SIMS. The general observation is that the efficiency of secondary ion formation, particularly that of complex molecular species, is significantly enhanced if polyatomic projectiles are employed instead of atomic species. Apart from the sensitivity increase, cluster bombardment also appears to allow for molecular depth profiling studies without the accompanying damage accumulation normally associated with atomic projectiles. A few fundamental aspects are addressed in an attempt to highlight the physics behind these observations. It appears that much of the benefit associated with cluster bombardment is connected to the fact that these projectiles give access to very high sputter yields which are not accessible with atomic primary ions.  相似文献   

2.
Cluster ions have been recognized as a superb primary species in time of flight secondary ion mass spectroscopy (ToF-SIMS) compared with monatomic primary ions, as they significantly enhance the secondary ion yields from bulk samples. Self-assembled monolayers provide an important system for studying the fundamental mechanism involved in the yield enhancement.We used a gold cluster ion source to analyze a new type of self-assembled monolayer: a fluorocarbon-grafted polyethylene terephthalate. In addition to the structure details, which helped to understand the grafting mechanism, ToF-SIMS analysis revealed that fluorocarbon secondary ion yield enhancements by cluster ions were due to the enhanced sputter efficiency. A larger information depth may also be expected from the enhancement. Both mathematical definitions of damage cross-section and disappearance cross-section were revisited under a new context. Another cross-section parameter, sputter cross-section, was introduced to differentiate the beam induced sputter process from damage process.  相似文献   

3.
Molecular dynamics simulations of ions at a hydrophobic self-assembled monolayer with polarizable force fields for water and ions are used to extract potentials of mean force for Na+ and the halide ions Cl-, Br-, and I-. Similar to the air-water interface, the large halide ions are attracted to the surface, which is traced back to surface-modified ion hydration. The total effective interaction is parametrized and used within Poisson-Boltzmann theory to calculate surface potentials and interfacial tensions at finite ion concentration in qualitative agreement with experiments.  相似文献   

4.
We present the first experimental data on the simultaneous ejection of two molecular ions from the impact of Au(+)(n) (1< or =n< or =4) with energies ranging between 17 and 56 keV. The yields from single phenylalanine (Ph) emission, coemission of two Ph ions, and emission of the Ph dimer were measured. Large increases (1 to 2 orders of magnitude) in coemitted ion yields were observed with increasing projectile energy and complexity. Correlation coefficients were calculated for the coemission of two Ph ions; their behavior suggests differences in emission pathways for bombardment by atomic and polyatomic projectiles.  相似文献   

5.
In addition to structural information, a detailed knowledge of the local chemical environment proves to be of ever greater importance, for example for the development of new types of materials as well as for specific modifications of surfaces and interfaces in multiple fields of materials science or various biomedical and chemical applications. But the ongoing miniaturization and therefore reduction of the amount of material available for analysis constitute a challenge to the detection limits of analytical methods. In the case of time-of-flight secondary ion mass spectrometry (TOF-SIMS), several methods of secondary ion yield enhancement have been proposed. This paper focuses on the investigation of the effects of two of these methods, metal-assisted SIMS and polyatomic primary ion bombardment. For this purpose, thicker layers of polystyrene (PS), both pristine and metallized with different amounts of gold, were analyzed using monoatomic (Ar+, Ga+, Xe+, Bi+) and polyatomic (SF5+, Bi3+, C60+) primary ions. It was found that polyatomic ions generally induce a significant increase of the secondary ion yield. On the other hand, with gold deposition, a yield enhancement can only be detected for monoatomic ion bombardment.  相似文献   

6.
Because of the requirements of large molecule characterization and high-lateral resolution SIMS imaging, the possibility of improving molecular ion yields by the use of specific sample preparation procedures has recently generated a renewed interest in the static SIMS community. In comparison with polyatomic projectiles, however, signal enhancement by a matrix might appear to some as the alchemist's versus the scientist's solution to the current problems of organic SIMS. In this contribution, I would like to discuss critically the pros and cons of matrix-enhanced SIMS procedures, in the new framework that includes polyatomic ion bombardment. This discussion is based on a short review of the experimental and theoretical developments achieved in the last decade with respect to the three following approaches: (i) blending the analyte with a low-molecular weight organic matrix (MALDI-type preparation procedure); (ii) mixing alkali/noble metal salts with the analyte; (iii) evaporating a noble metal layer on the analyte sample surface (organic molecules, polymers).  相似文献   

7.
In order to investigate the secondary cluster ion emission process of organo-metallic compounds under keV ion bombardment, self-assembled monolayers (SAMs) of alkanethiols on gold are ideal model systems. In this experimental study, we focussed on the influence of the primary ion species on the emission processes of gold-alkanethiolate cluster ions from a hexadecanethiol SAM on gold. For this purpose, we carried out time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurements using the following primary ion species and acceleration voltages: Ar+, Xe+, SF5+ (10 kV), Bi+, Bi3+(25 kV), Bi32+, Bi52+, Bi72+ (25 kV).It is well known that molecular ions M and gold-alkanethiolate cluster ions AuxMy with M = S-(CH2)15-CH3, x − 3 ≤ y ≤ x + 1, x, y > 0, show intense peaks in negative mass spectra. We derived yields YSI exemplarily for the molecular ions M and the gold-hexadecanethiolate cluster ions Auy+1My up to y = 8 and found an exponentially decreasing behaviour for increasing y-values for the cluster ions.In contrast to the well-known increase in secondary ion yield for molecular secondary ions when moving from lighter to heavier (e.g. Ar+ to Xe+) or from monoatomic to polyatomic (e.g. Xe+ to SF5+) primary ions, we find a distinctly different behaviour for the secondary cluster ions. For polyatomic primary ions, there is a decrease in secondary ion yield for the gold-hexadecanethiolate clusters whereas the relative decrease of the secondary ion yield ξY with increasing y remains almost constant for all investigated primary ions.  相似文献   

8.
Self-assembled monolayers represent well-defined systems that is a good model surface to study the effect of primary ion beams used in secondary ion mass spectrometry. The effect of polyatomic primary beams on both aliphatic and aromatic self-assembled monolayers has been studied. In particular, we analysed the variation of the relative secondary ion yield of both substrate metal-cluster (Aun) in comparison with the molecular ions (M) and clusters (MxAuy) by using Bi+, Bi3+, Bi5+ beams. Moreover, the differences in the secondary ion generation efficiency are discussed. The main effect of the cluster beams is related to an increased formation of low-mass fragments and to the enhancement of the substrate related gold-clusters. The results show that, at variance of many other cases, the static SIMS of self-assembled monolayers does not benefit of the use of polyatomic primary ions.  相似文献   

9.
We investigated the emission of the secondary ions stimulated by single impacts of 136 keV Au4004+ projectiles. The study was carried out on targets of glycine, phenylalanine, and C60. In addition, a target of C60 was examined with 18 keV C60+ projectiles. The experiments were performed in the event-by-event bombardment/detection mode. The secondary ions were identified with linear time-of-flight mass spectrometer equipped with an 8-anode detector. The Au4004+ projectile induces abundant multi-ion emission, for instance the average number of detected ions (atomic, fragment, molecular and cluster ions) emitted per event from glycine target is 12.5. The glycine intact molecular ion (Gly) yield is 1.14. The bombardment of a C60 target results in the efficient emission of multiple intact C60 (total yield is 0.15).  相似文献   

10.
In this study on pure water ice, we show that protonated water species [H2O]nH+ are more prevalent than (H2O)n+ ions after bombardment by Au+ monoatomic and Au3+ and C60+ polyatomic projectiles. This data also reveals significant differences in water cluster yields under bombardment by these three projectiles. The amino acid alanine and the nucleic base adenine in solution have been studied and have been shown to have an effect on the water cluster ion yields observed using an Au3+ ion beam.  相似文献   

11.
Mass spectra of positive and negative secondary ions from various alkali halides have been measured in the Manitoba time-of-flight mass spectrometer. The ions were produced by Cs+ and K+ bombardment at primary ion energies of 3 to 19 keV for the positive spectra, and 11 to 28 keV for the negative spectra. The ions measured were those emitted within a time interval ~ 20 ns after the primary ion impact. The secondary ion yields are strongly dependent on the sample composition and treatment; prior irradiation may change the yield by an order of magnitude or more. The secondary ion yields also depend strongly on the energy loss of the primary ion, but the ratio of yields of different cluster ions from a given target is almost independent of this parameter. The results appear to be consistent with models in which the clusters are ejected directly from the target, but do not determine whether or not they possess the original surface structure. The results may also be described by a recombination model if the recombination is essentially complete.  相似文献   

12.
In secondary ion mass spectrometry, polyatomic primary ion sources are known to enhance yields from many surfaces including polymers. In order to understand the fundamental causes for these increases, the enhancement as a function of material type and molecular weight needs to be delineated. In this article, we report results from a systematic investigation of polymeric films of polystyrene (PS) with varying molecular weights to examine the influence of the primary ion beam on the secondary ion yields in time of flight secondary ion mass spectrometry (ToF-SIMS). The masses of the polymers investigated ranged from 1000 to 20,000 Da, or from about n = 10 to 200 where n indicates the number of polymeric units in a polymer chain. The polymers had a narrow molecular weight range (PDI < 1.07). The multilayer polymeric films (10-30 nm) characterized by AFM were prepared by spin-casting onto silicon substrates and were analyzed using Au+ and C60+ primary ion beams. The analysis with the two beams provided a useful comparison between atomic and polyatomic primary ion sources. Information gathered from this study provides insight into the role of molecular weight on the observed yield enhancement from polyatomic ion sources.  相似文献   

13.
We have developed a new experimental apparatus for performing coincidence measurements of the ions desorbed and projectiles scattered from the surfaces of noble gas solids by slow multiply charged ion impacts at grazing incidence angles. This simultaneously measures the desorbed ions' flight times and the scattered projectiles' charge states. We also conduct experiments on 6 keV Ar6+ impacts onto a solid Ne surface using the device.  相似文献   

14.
Si was bombarded with size-selected 40 keV Ar cluster ions and positive secondary ions were measured using the time-of-flight technique under high and ultra-high vacuum (HV and UHV respectively) conditions. Si+ ions were main species detected under the incidence of 40 keV Ar cluster ions, and the yields of Si cluster ions such as Si4+ were also extremely high under both conditions. On the other hand, oxidized secondary ions such as SiO+ were detected with high intensity only under the HV condition. The yield ratios of oxidized ions decreased in UHV to less than 1% of their values in HV. The effect of residual gas pressure on Si cluster ion yields is relatively low compared to oxidized ions, and the UHV condition is required to obtain accurate secondary ion yields.  相似文献   

15.
Fluorescence yields of highly ionized projectiles entering thin solid foils are determined from a target-thickness analysis of projectile and target K X-ray cross sections. Values are obtained for 20–80 MeV Cl ions on Cu and compared with scaling calculations.  相似文献   

16.
The deposition of 2 Å of Al metal onto a monolayer of methylester-terminated alkanethiolate (HS(CH2)15CO2CH3) self-assembled on polycrystalline Au(111) was studied using time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS) and infrared reflectance spectroscopy (IRS). The deposited Al was found to be highly reactive with the oxygen atoms in the self-assembled monolayer terminal functional group. No reactivity between Al and the methylene backbone of the monolayer was observed, nor was any Al observed at the monolayer/Au interface. However, the deposition of Al does induce some chain disordering.  相似文献   

17.
We have studied reactive ion scattering (RIS) of hyperthermal (1–100 eV) Cs+ projectiles from physisorbed surfaces. RIS experiments from physisorbed water on Pt(1 1 1) reveal scattering products of Cs(H2O)n+ (n=1–3) cluster ions. The yields for RIS products are extremely high compared to those with chemisorbed species. Classical molecular dynamics simulations provide a new mechanism that explains the enhanced RIS yields with physisorbed species. Slow Cs+ projectiles pick up physisorbed molecules via an ion–surface abstraction reaction, preferably without direct collisions between projectile and adsorbate. This RIS process is very efficient and mechanistically different from the RIS process responsible for chemisorbed species that occurs through direct collision-induced desorption.  相似文献   

18.
Static ToF-SIMS was used to evaluate the effect of gold condensation as a sample treatment prior to analysis. The experiments were carried out with a model molecular layer (Triacontane M = 422.4 Da), upon atomic (In+) and polyatomic (Bi3+) projectile bombardment. The results indicate that the effect of molecular ion yield improvement using gold metallization exists only under atomic projectile impact. While the quasi-molecular ion (M+Au)+ signal can become two orders of magnitude larger than that of the deprotonated molecular ion from the pristine sample under In+ bombardment, it barely reaches the initial intensity of (M−H)+ when Bi3+ projectiles are used. The differences observed for mono- and polyatomic primary ion bombardment might be explained by differences in near-surface energy deposition, which influences the sputtering and ionization processes.  相似文献   

19.
T. Ohwaki  Y. Taga 《Surface science》1985,157(1):L308-L314
The yield and energy distribution of positive secondary ions emitted from Si under N2+ ion bombardment were measured. The obtained mass peaks correspond to three types of secondary ion species, that is, physically sputtered ions (Si+, Si2+), chemically sputtered ions (SiN+ Si2N+) and doubly charged ions (Si2+). The dependence of secondary ion emission on the primary ion energy was studied in a range of 2.0–20.0 keV. The yields of physically and chemically sputtered ions were almost independent of the primary ion energy. The yield of the doubly charged ion strongly depended on the primary ion energy. The energy distribution of secondary ions of the three types showed the same dependence on the primary ion energy. The most probable energy of the distribution increased with the primary ion energy. On the other hand, for the energy distribution curves of sputtered ions, the tail factors N in E?N were constant and showed a m/e dependence.  相似文献   

20.
Abstract

This paper describes the determination of secondary ion yields for negative ions obtained by bombardment of copper by cesium ions. Stable and reproducible surface conditions are reached by high rate sodium deposition simultaneously with sputtering. An optimum thickness of sodium corresponding to about one monolayer is found. Total negative ion yields K ? Σ are measured by a double modulation technique. Individual negative ion yields K ? i are then found by mass spectrometrically determining the various negative ion intensities, the sum of which relates linearly to K ? Σ. This method is based on the assumption of an equal angular and energy distribution of all sputtered negative ions. Data are given for K? Σ and K ? Cu and K? O. The dependence of K ? i on primary ion energy (500 to 2500 eV) is similar to ordinary sputtering which points to the same basic mechanism in both cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号