首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In order to investigate the relationship between negative thermal expansion and other thermal properties, the thermal conductivity of the α-phase of ZrW2O8 has been determined from 1.9 to 390 K. In addition, the heat capacity was measured from 1.9 to 300 K. The thermal conductivity of ZrW2O8 is low, glass-like and close to its theoretical minimum value. The phonon-phonon coupling of the highly anharmonic low-frequency modes which are responsible for negative thermal expansion in ZrW2O8 appears to be highly efficient, leading to short phonon mean free paths and exceptionally low thermal conductivity.  相似文献   

2.
First principle calculations have been performed to study the lattice vibration of BaX2 (X = Si, Ge). A rigid-unit vibrational mode has been observed, and this mode confines and scatters acoustic phonon modes, leading to a low thermal conductivity. Their stability is analyzed from the calculations of thermodynamic properties.  相似文献   

3.
The phonon spectra of metallic disilicides VSi2, NbSi2, and TaSi2 have been studied in detail by inelastic neutron scattering at 300 K and specific heat measurements between 10 K and 250 K. The specific heat calculated from the generalised phonon density of states extracted from neutron measurements is in good agreement with the measured lattice contribution to the specific heat. The properties of the phonon spectra are discussed in relation with other data reported for these isostructural and isoelectronic disilicides.  相似文献   

4.
Raman scattering on single crystals of Eu3S4 does not show the allowed q=o phonon modes in the cubic phase and exhibits no new modes in the distorted low temperature phase (T<186 K). Above the Curie temperature Tc=3.8 K the scattering is dominated by a spin-disorder induced one-phonon density of states allowing for the observation of the zone boundary phonon breathing mode of the S2?ions. This mode does not show any anomaly near the charge order -disorder phase transition Tt=186 K. Temperature tunable spin fluctuations associated with the temperature activated Eu2+→Eu3+ electron hopping are detected in the scattering intensity, superimposed on the usual thermal spin disorder.  相似文献   

5.
Normal state electrical and thermal properties, including electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) of the CaAlxSi2−x (x=0.9-1.2) system were investigated. It is found that the electrical resistivity and Seebeck coefficient exhibit a typical metallic character throughout the temperature range investigated, and the metallicity of this series is enhanced with increase in Al/Si ratio. On the other hand, the thermal conductivity shows a weak temperature variation at low temperatures, whereas κ follows a T2-dependence for T>150 K. Analysis of the electronic thermal resistivity based on Klemen’s model reveals that the scattering of electrons from the defects and static imperfections becomes dominant as the temperature approaches Tc. These results are discussed in the light of simultaneous existence of various crystal structures and development of ultra-soft phonon mode recently observed in the CaAlSi system.  相似文献   

6.
Incorporation of Ag in the crystal lattice of Sb2Te3 creates structural defects that have a strong influence on the transport properties. Single crystals of Sb2−xAgxTe3 (x=0.0; 0.014; 0.018 and 0.022) were characterized by measurements of the temperature dependence of the electrical resistivity, Hall coefficient, Seebeck coefficient and thermal conductivity in the temperature range of 5-300 K. With an increasing content of Ag the electrical resistance, the Hall coefficient and the Seebeck coefficient all decrease. This implies that the incorporation of Ag atoms in the Sb2Te3 crystal structure results in an increasing concentration of holes. However, the doping efficiency of Ag appears to be only about 50% of the expected value. We explain this discrepancy by a model based on the interaction of Ag impurity with the native defects in the Sb2−xAgxTe3 crystal lattice. Defects have a particularly strong influence on the thermal conductivity. We analyze the temperature dependence of the lattice thermal conductivity in the context of the Debye model. Of the various phonon scattering contributions, the dominant influence of Ag incorporation in the crystal lattice of Sb2Te3 is revealed to be point-defect scattering where both the mass defect and elastic strain play a pivotal role.  相似文献   

7.
Structural, magnetic, heat capacity, electrical and thermal transport properties are reported on polycrystalline Ba8Ni6Ge40. Ba8Ni6Ge40 crystallizes in a cubic type I clathrate structure with unit cell a=10.5179 (4) Å. It is diamagnetic with susceptibility χdia=−1.71×10-6 emu/g Oe. An Einstein temperature 75 K and a Debye temperature 307 K are estimated from heat capacity data. It exhibits n-type conducting behavior below 300 K. It shows high Seebeck coefficients (−111×10-6 V/K), low thermal conductivity (2.25 W/K m), and low electrical resistivity (8.8 mΩ cm) at 300 K.  相似文献   

8.
Sn-filled CoSb3 skutterudite compounds were synthesized by the induction melting process. Formation of a single δ-phase of the synthesized materials was confirmed by X-ray diffraction analysis. The temperature dependences of the Seebeck coefficient, electrical resistivity and thermal conductivity were examined in the temperature range of 300-700 K. Positive Seebeck and Hall coefficients confirmed p-type conductivity. Electrical resistivity increased with increasing temperature, which shows that the Sn-filled CoSb3 skutterudite is a degenerate semiconductor. The thermal conductivity was reduced by Sn-filling because the filler atoms acted as phonon scattering centers in the skutterudite lattice. The lowest thermal conductivity was achieved in the composition of Sn0.25Co8Sb24.  相似文献   

9.
Lattice dynamics of La11B6 was studied on the neutron triple axis spectrometers at HFIR. The acoustic and optical modes were measured in the high symmetry directions. The rotary motion of the B6 molecule was measured only near the zone boundaries but shows no softening. Instead, very flat low frequency La modes were observed. The agreement with the elastic constants and the temperature dependence of specific heat is satisfactory.In YbB6, the elastic constants and specific heat were measured. Both results give the quite different feature from those of LaB6, no softening of C12 and more softened flat low frequency Yb modes, due to the lack of the metallic bonds.  相似文献   

10.
The initial magnetic susceptibility χr, the thermoremanent and isothermal remanent magnetizations have been measured below 10 K on single crystals of (Ti1?xVx)2O3 for x = 0.03, 0.05 and 0.07. The data clearly show a spin glass behaviour, with peaks in the curve χr(T). These results are related to the anomaly in the low temperature specific heat of these compounds, reported elsewhere. It is shown that this anomaly is mainly due to spin glass properties and only partly to electronic properties. This leads to a reinterpretation of the mechanism by which V in Ti2O3 induces the metallic phase and at the same time carries a magnetic moment.  相似文献   

11.
We have performed an ab initio study of structural, electronic, magnetic, vibrational and thermal properties of the cubic spinel LiMn2O4 by employing the density functional theory, the linear-response formalism, and the plane-wave pseudopotential method. An analysis of the electronic structure with the help of electronic density of states shows that the density of states at the Fermi level (N (EF)) is found to be governed by the Mn 3d electrons with some contributions from the 2p states of O atoms. It is important to note that the contribution of Mn 3d states to N(EF)N(EF) is as much as 85%. From our phonon calculations, we have obtained that the main contribution to phonon density of states (below 250 cm−1) comes from the coupled motion of Mn and O atoms while phonon modes between 250 cm−1 and 375 cm−1 are characterized by the vibrations of all the three types of atoms. The contribution from Li increases rapidly at higher frequency (above 375 cm−1) due to the light mass of this atom. Finally, the specific heat and the Debye temperature at 300 K are calculated to be 249.29 J/mol K and 820.80 K respectively.  相似文献   

12.
Characterization of the (76V2O5-24P2O5)1−X (Li3PO5)X, where X=0.0,0.01,0.02,0.10 and 0.15, glass has been done using X-ray diffraction and differential thermal analysis (DTA). The dc conductivity of the glass samples was studied over a temperature range from 300 to 593 K. The temperature dependence of dc conductivity shows two regions. One at relatively high temperature range, above θD/2, and the other at relatively low temperature range, below θD/2. The I-V characteristics of the glasses have been studied as a function of both temperature and Li3PO4 content. The I-V characteristics exhibits threshold switching with differential negative resistance. It's found that both the threshold voltage (Vth) and threshold current (Ith) are dependent on the temperature and lithium phosphate concentration.  相似文献   

13.
Polycrystalline sample of Ca3Nb2O8 was prepared by a high-temperature solid-state reaction technique. X-ray diffraction (XRD) analysis confirms the formation of single-phase compound of hexagonal (rhombohedral) crystal structure at room temperature. Scanning electron micrograph of the material showed uniform grain distribution on the surface of the sample. Detailed studies of dielectric properties of the compound, studied in a wide frequency range (102-106 Hz) at different temperatures (25-500 °C), exhibit a dielectric anomaly suggesting phase transition of ferroelectric-paraelectric and structural type at 300 °C. Electrical properties of the material were analyzed using a complex impedance technique. The Nyquists plot showed the presence of bulk effect in the material in the studied temperature range. Studies of electrical conductivity over a wide temperature range suggest that the compound has negative temperature coefficient of resistance behavior.  相似文献   

14.
Measurements of the thermal conductivity of a superconducting metallic glass Zr70Cu30 in zero field and in a magnetic field exceeding the upper critical field allow a quantitative determination of the strength of the phonon-electron scattering for the first time in amorphous metals. The temperature dependence of the residual phonon scattering by localized low energy excitations is similar to that found in insulating glasses.  相似文献   

15.
The electrical and magnetic properties of one-dimensional calcium iridium oxide Ca5Ir3O12 are investigated. A weak ferromagnetic transition has been found at 7.5 K through magnetic susceptibility measurements. At the same temperature, a λ-type specific heat anomaly has been observed. The effective magnetic moments in the paramagnetic temperature range and the magnetic entropy due to the magnetic transition indicates that the tetravalent and pentavalent Ir ions exist in the ratio of 1:2. Another λ-type anomaly has been observed at 105 K in the temperature dependence of the specific heat. The electrical conductivity shows one-dimensional Mott variable-range hopping conduction behavior.  相似文献   

16.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

17.
Bulk Se96Sn4 chalcogenide glass was prepared by melt quenching technique and irradiated by different doses of 4, 8, 12, 24 and 33 kGy using 60Co gamma emitter. I-V characteristics were obtained for this glass, before and after gamma irradiation, in the temperature range 200-300 K. Ohmic behavior was observed at low electric fields (≤1×104 V/m), while at higher fields, a deviation from ohmic towards non-ohmic behavior was observed. The plots of ln(I/V) vs. V were found to be straight lines and the slopes of these lines decrease linearly with temperature indicating the presence of SCLC. In the temperature range of measurements, the dependence of DC conductivity on temperature at low electric field shows two types of conduction channels, one in high temperature range 270-300 K and the other at low temperature range 200-270 K. Analysis of the experimental data shows that the conductivity at room temperature decreases with increase in irradiation dose. This is attributed to rupturing of SnSe4/2 structural units, upon irradiation, and rebuilt of Se atoms between Se chains. This redistribution of bonds, induced by gamma irradiation, is responsible for the corresponding increase in the activation energy. The obtained values of the activation energy indicate that the conduction occurs due to thermally assisted charge carriers movement in the band tail of localized states. However, in the low temperature range, results obtained from Mott’s variable range hopping (VRH) model reveal that the density of localized states has its maximum value at a gamma dose of 12 kGy, while the disorder parameter To, hopping distance Rhop and hopping energy W have their minimum value at this particular dose.  相似文献   

18.
王彦成  邱吴劼  杨宏亮  席丽丽  杨炯  张文清 《物理学报》2018,67(1):16301-016301
对于重要热电材料之一的填充方钴矿材料,其低热导率的成因存在两种观点:1)填充原子的局域振动引起共振散射降低热导率;2)填充原子的引入加强了三声子倒逆过程来降低热导率.本文采用含有限温度效应的第一性原理分子动力学方法模拟了YbFe_4Sb_(12)的动力学过程,并通过温度相关有效势场方法得到了充分包含非线性作用的等效非谐力常数,研究了微扰近似下的声子输运性质.结果显示,在填充原子振动全部参与三声子倒逆散射过程的近似下,相比于纯方钴矿体系,声子寿命大幅地降低,填充原子的振动是热阻的重要来源.但即便如此,理论计算结果与实验的晶格热导率之间仍存在明显偏离.不同填充原子振动之间的较弱关联性质也揭示其明显偏离经典的声子图像,表现为一种强烈的局域特征振动模式,并以此散射其他晶格声子,因而对热阻的贡献也超出了传统三声子的理论框架.通过将填充原子Yb振动模式的寿命进行共振散射形式的修正,可以使晶格热导率与实验结果符合较好.以上结果表明,YbFe_4Sb_(12)的低晶格热导率是由声子间相互作用以及具有局域振动特征的共振散射两方面因素导致.  相似文献   

19.
The present paper reports a comprehensive and complementary study on structural, electronic and phonon properties of face centered cubic fluorites, namely CaF2, BaF2 and SrF2, using first principles density functional calculations within the generalized gradient approximation. The calculated lattice constants and bulk modulus are in good agreement with available experimental data. The analysis of band structure and density of states confirms the ionic character for all the three fluorides. The phonon dispersion curves and corresponding phonon density of states obtained in the present work are consistent with the available experimental and other theoretical data. The LO-TO splitting is maximum for CaF2, which confirms that the ionicity is maximum in the case of CaF2. The phonon properties for SrF2 have been calculated for the first time.  相似文献   

20.
Highly (00l)-oriented pure Bi2Te3 films with in-plane layered grown columnar nanostructure have been fabricated by a simple magnetron co-sputtering method. Compared with ordinary Bi2Te3 film and bulk materials, the electrical conductivity and Seebeck coefficient of such films have been greatly increased simultaneously due to raised carrier mobility and electron scattering parameter, while the thermal conductivity has been decreased due to phonon scattering by grain boundaries between columnar grains and interfaces between each layers. The power factor has reached as large as 33.7 μW cm−1 K−2, and the out-of-plane thermal conductivity is reduced to 0.86 W m−1 K−1. Our results confirm that tailoring nanoscale structures inside thermoelectric films effectively enhances their performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号