首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main objective of the present work was to study the role of organoclay on the microstructure development and rheological properties of poly(butylene terephtalate)/ epoxy/organoclay (Cloisite® 30B) hybrid nanocomposites. The effects of feeding order and curing of the epoxy were also investigated. The hybrid nanocomposite samples were prepared by melt compounding in a laboratory internal mixer at a temperature of 240°C. The samples were prepared by three feeding routes; (1) simultaneous feeding, (2) PBT/organoclay based master batch feeding, and (3) epoxy/organoclay based master batch feeding. The XRD results evidenced a highly intercalated microstructure for all the samples. The linear viscoelastic results obtained for uncured samples, prepared by the first and second feeding routes, exhibited a pronounced low-frequency nonterminal behavior whose extent was found to be increased in the cured samples. These results suggested that the major part of the nanoclay tactoids and/or platelets were dispersed in the PBT matrix, with higher nanoclay concentration in the sample prepared by the second feeding route. However, the samples prepared through epoxy/organoclay based master batch did not exhibit an appreciable low-frequency solid body response. This suggests that the process of migration of the nanoclay tactoids and/or platelets from epoxy droplets to PBT matrix was the time consuming process due to the high aspect ratio of the nanoclay and the high viscosity of the PBT matrix. From linear and nonlinear viscoelastic measurements, it could be deduced that the curing process does not play an important role in determining the extent of intercalation and dispersion of the nanoclay, but it can enhance the interfacial interaction between the two phases in the nanocomposite.  相似文献   

2.
《Composite Interfaces》2013,20(7-9):711-729
The surfaces of kenaf fibers were treated with three different silane coupling agents. 3-glycidoxypropyltrimethoxy silane (GPS), 3-aminopropyltriethoxy silane (APS), and 3-methacryloxypropyltrimethoxy silane (MPS). Among them, the most effective one for the property improvement was GPS when it was applied to the kenaf fiber surfaces at 0.5 wt%. Thermoplastic polypropylene (PP) and thermosetting unsaturated polyester (UPE) matrix composites with chopped kenaf fibers untreated and treated at different GPS concentrations from 0.1 wt% to 5 wt% were fabricated using compression molding technique. The present study demonstrates that the interfacial, flexural, tensile, and dynamic mechanical properties of both kenaf/PP and kenaf/UPE composites importantly depend on the GPS treatments done at different concentrations. The greatest property improvement of both thermoplastic and thermosetting polymer composites was obtained with the silane treatment at 0.5 wt% and the mechanical properties were comparable with E-glass composites prepared the same polymer matrix under the corresponding fiber length and fiber loading. The results also agreed with each other with regard to their interfacial shear strength, flexural properties, tensile properties, storage modulus, with support of fracture surfaces of the composites.  相似文献   

3.
Curing behavior of amino-functionalized carbon nanotubes (ACNT) used as reinforcing agent in epoxy resin has been examined by thermal analysis. Experiments performed as per supplier’s curing conditions showed that modification of the curing schedule influences the thermo-mechanical properties of the nanocomposites. Specifically, the glass transition temperature (Tg) of ACNT-reinforced composites increased likely due to the immobility of polymer molecules, held strongly by amino carbon nanotubes. Further, a set of composites were prepared by implementing the experimentally determined optimal curing schedule to examine its effect on the mechanical properties of different GFRP compositions, while focusing primarily on reinforced ACNT and pristine nanotube (PCNT) matrix with silane-treated glass fibers. From the silane treatment of glass fibers in ACNT matrix composition it has been observed that amino silane is much better amongst all the mechanical (tensile and flexural) properties studied. This is because of strong interface between amino silane-treated glass fibers and modified epoxy resin containing uniformly dispersed amino-CNTs. On the other hand, PCNT GFRP composites with epoxy silanes demonstrated enhanced results for the mechanical properties under investigation which may be attributed to the presence of strong covalent bonding between epoxy silane of glass fiber and epoxy–amine matrix.  相似文献   

4.
Nano‐SiO2/epoxy composites cured by Mannich Amine (type T‐31) were prepared and studied and the results are reported in this paper. The nano‐SiO2 was pretreated by a silane coupling agent (type KH‐550) and mixed with epoxy resin (type E‐51) using an ultrasonic processor. Amounts of filler loading ranged from 1% to 5% of the weight of the epoxy resin. Some properties of the resulting composites were characterized by X‐ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results of tensile tests and impact tests showed that the composite with 3% nano‐SiO2 loading presented the best mechanical performances. The tribological performance and thermal stability of the materials were also improved with the addition of nano‐SiO2.  相似文献   

5.
《Composite Interfaces》2013,20(7):471-488
The moisture(55 wt%)-treated silica compounds, bis(triethoxysilylpropyl)disulfide (TESPD)/silica/carbon black (CB)/SBR and bis(triethoxysilylpropyl)tetrasulfide (TESPT)/silica/CB/SBR, have been processed in a batch mixer and they are investigated with respect to the alcohol residue level in silane, the processability, the vulcanization characteristics, and the mechanical properties. The alcohol level is low at the moisture treated compounds. The TESPD compounds show lower alcohol level than the TESPT ones on moisture treated and untreated compounds. The probe temperatures of the moisture treated compounds are lower than the drop temperature, while those of the untreated compounds are higher than the drop ones, respectively. The vulcanization properties of the compounds are changed by the moisture treatment and this improves the physical properties of the compounds. The moisture treatment on silica surface increases the hydrolysis reaction of the alkoxy silane and the hydrolyzed silane improved the coupling reaction with the hydroxyl group on silica surface during reactive batch processing. It also reduces the rate of temperature rise during batch mixing due to the latent heat of the moisture and the endothermic reaction between silica and silane. At the vulcanization stage, it seems to further increase the coupling reaction between silica and silane. The steric hindrance theory of an alkoxy silane (TESPT) has to be reconsidered with a large amount of moisture treated silica/TESPD/CB/S-SBR compound system.  相似文献   

6.
Clay adsorbents were prepared via two-step method to remove nonionic alachlor and anionic imazaquin herbicides from water. Firstly, layered beidellite clay, a member of smectite family, was treated with acid in hydrothermal process; secondly, common silane coupling agents, 3-chloro-propyl trimethoxysilane or triethoxy silane, were grafted on the acid treated samples to prepare adsorbent materials. The organically modified clay samples were characterized by powder X-ray diffraction, N2 gas adsorption, and FTIR spectroscopy. It was found that the selective modification of clay samples displayed higher adsorption capacity for herbicides compared with acid activated clay. And the amount of adsorption is increased with increasing the grafting amount of silane groups. Clay grafted with 3-chloro-propyl trimethoxysilane is an excellent adsorbent for both alachlor and imazaquin but triethoxy (octyl) silane grafted clay is more efficient only for alachlor removal.  相似文献   

7.
Nano-filled polyurethane coatings were prepared by incorporation of various amounts of untreated and amino propyltrimethoxy silane (APS) treated TiO2 nanoparticles. TEM and AFM techniques were employed to evaluate dispersion of nanoparticles and surface morphology of the coating, respectively. TEM observations revealed that the APS treated nanoparticles have a better dispersion and smaller agglomeration, compared with their untreated counterparts. AFM images revealed that, surface roughness of the coatings increased with increasing of nanoparticles content, however, at equal level of loadings; coatings containing untreated nanoparticles showed a higher surface roughness.Colour changes (colour coordinates data measurements), mechanical properties and surface morphology of the PU nanocomposite coatings, before and after being exposed to a QUV chamber for 1000 h were studied using various techniques. The results revealed that addition of 0.5 to 1.0 wt.% APS treated TiO2 nanoparticles reduces photocatalytic activity, and improves the weathering performance PU nanocomposite coatings. Tensile strength measurements showed significant improvement of mechanical properties of PU coatings containing modified TiO2 nanoparticles. Results also revealed that the colour measurement is a useful technique and non destructive method for evaluation of coating's performance against weathering conditions. The experimental results showed a good correlation between different techniques findings.  相似文献   

8.
In this study, the effect of silane treatment of Fe3O4 on the magnetic and wear properties of Fe3O4/epoxy nanocomposites was investigated. Fe3O4 nanopowders were prepared by coprecipitation of iron(II) chloride tetrahydrate with iron(III) chloride hexahydrate, and the surfaces of Fe3O4 were modified with 3-aminopropyltriethoxysilane. The magnetic properties of the powders were measured on unmodified and surface-modified Fe3O4/epoxy nanocomposites using SQUID magnetometer. Wear tests were performed on unmodified and surface-modified Fe3O4/epoxy nanocomposites under the same conditions (sliding speed: 0.18 m/s, load: 20 N).The results showed that the saturation magnetization (Ms) of surface-modified Fe3O4/epoxy nanocomposites was approximately 110% greater than that of unmodified Fe3O4/epoxy nanocomposites. This showed that the specific wear rate of surface-modified Fe3O4/epoxy nanocomposites was lower than that of unmodified Fe3O4/epoxy nanocomposites. The decrease in wear rate and the increase in magnetic properties of surface-modified Fe3O4/epoxy nanocomposites occurred due to the improved dispersion of Fe3O4 into the epoxy matrix.  相似文献   

9.
《Composite Interfaces》2013,20(6):611-628
This research used Co60 γ-ray radiation to modify Armos fibers in 1,2-epoxy-3-chloropropane. After the treatment, the interlaminar shear strength (ILSS) values of aramid/epoxy composites were improved by about 20%. Surface elements of Armos fibers were determined by XPS analysis, which indicated that the oxygen/carbon ratio was increased. The surface of the fibers treated was rougher than that of the untreated fibers when examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Fourier transform infrared (FT-IR) spectra confirmed that the epoxy group was grafted onto the fibers. The wettability of the fibers' surface was also enhanced by the treatment. Nanoindentation technique analysis showed that the nanohardnesses of the various phases (the fiber, the interface and the matrix) in the composite, whose fibers were treated, were correspondingly higher than those in the composite, whose fibers were untreated. The results indicate that γ-ray irradiation grafting technique, which is a suitable batch process for industrialization, can modify the physicochemical properties of Armos fibers and improve the interfacial adhesion of its composite.  相似文献   

10.
《Composite Interfaces》2013,20(6):531-541
Effects of the adhesion between filler particle and matrix on the erosion rate were studied in cured epoxy resin filled with glass beads having mean diameter 17 um. In order to observe the effect of adhesion on erosion rate. the filler particles were treated with silane coupling agent, silicone oil and washed by acetone as well. The filler content of the specimen was varied and also the specimens were attacked by different size angular particles. The comparison of each type of specimen shows that by using acetone and silicone oil for surface treatment, the erosion rate is relatively high. Whereas the specimen in which the filler was treated by silane have low erosion rate. The difference of erosion behavior is influenced by impacting particle size and filler content. Using small impacting particles and also low filler content, the erosion behavior between silane and acetone treated was quite different. On the other hand, using large impacting particles and high filler content, the erosion behavior between them was similar.  相似文献   

11.
《Composite Interfaces》2013,20(5):297-311
Fiber–matrix interfacial bonding plays a critical role in controlling performance properties of polymer composites. Carbon fibers have major constraints of chemical inertness with the matrix and need the surface treatment to improve the adhesion with the matrix. In this work, parametric appraisal of three-body abrasive wear behavior was presented for silane treated carbon fabric reinforced epoxy (C-E) composites with and without silane treated silicon carbide (SiC) as filler. The fiber content was fixed at 60?wt.%, while the weight fraction of SiC was varied (5 and 10?wt.%) to obtain three different compositions. Three-body abrasive wear tests were conducted using design of experiments approach based on Taguchi’s orthogonal arrays. The findings of experiments indicate that the wear loss is greatly influenced by load and grain size of abrasive. An optimal parameter combination was determined, which leads to maximization of abrasion resistance. Inclusion of SiC filler reasonably increased the abrasion resistance of C-E composite. Analysis of variance results showed that the load significantly influenced the abrasion of SiC filled C-E composites. Efforts were also made to correlate the abrasive wear performance of SiC filled C-E composites using artificial neural network (ANN). The wear behavior of composite by ANN prediction closely matched the experimental results and finally, optimal wear settings for minimum wear were identified.  相似文献   

12.
The tribological properties, such as coefficient of friction, adhesion and wear durability of an ultra-thin (<10?nm) dual-layer film on a silicon surface were investigated. The dual-layer film was prepared by dip-coating perfluoropolyether (PFPE), a liquid polymer lubricant, as the top layer onto a 3-glycidoxypropyltrimethoxy silane self-assembled monolayer (epoxy SAM)-coated Si substrate. PFPE contains hydroxyl groups at both ends of its backbone chain, while the SAM surface contains epoxy groups, which terminate at the surface. A combination of tests involving contact angle measurements, ellipsometry, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) was used to study the physical and chemical properties of the film. The coefficient of friction and wear durability of the film were investigated using a ball-on-disk tribometer (4?mm diameter Si3N4 ball as the counterface at a nominal contact pressure of ~330?MPa). AFM was used to investigate the adhesion forces between a sharp Si3N4 tip and the film. This dual-layer film had a very low coefficient of friction, adhesion and wear when compared to epoxy SAM-coated Si only or bare Si surface. The reasons for the improved tribological performance are explained in terms of the lubrication characteristics of PFPE molecules, low surface energy of PFPE, covalent bonding between PFPE and epoxy SAM coupled with reduced mobile PFPE. The low adhesion forces coupled with high wear durability show that the film has applications as a wear resistant and anti-stiction film for microcomponents made from Si.  相似文献   

13.
A superhydrophobic complex coating for cotton fabrics based on silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent (PFSC) was reported in this article. The complex thin film was prepared through a sol-gel process using cotton fabrics as a substrate. Silica nanoparticles in the coating made the textile surface much rougher, and perfluorooctylated quaternary ammonium silane coupling agent on the top layer of the surface lowered the surface free energy. Textiles coated with this coating showed excellent water repellent property, and water contact angle (CA) increased from 133° on cotton fabrics treated with pure PFSC without silica sol pretreatment up to 145°. The oil repellency was also improved and the contact angle of CH2I2 droplet on the fabric surface reached to 131°. In contrast, the contact angle of CH2I2 on the fabric surface treated with pure PFSC was only 125°.  相似文献   

14.
Carbon black (N234) and silica (Vulksail N) with a silane coupling agent Si-69 were chosen as reinforcing fillers in butyl rubber (IIR). The rheological behavior of the IIR compounds and the dynamic mechanical properties of IIR vulcanizates were investigated with a rubber processing analyzer and dynamic mechanical analysis (DMA) to examine the filler dispersion in the rubber matrix and the interaction between filler and matrix. The data indicated that the N234 filled IIR compounds had more filler networks than those filled with silica. Filler networks first appeared at 30 phr N234 and 45 phr silica with silane coupling agent Si-69. The interaction between N234 and IIR was far stronger than that between silica and IIR. However, the silica Vulksail N filled IIR had better wet-grip and lower rolling resistance compared to the carbon black-filled IIR should IIR be chosen as a substitute of styrene-butadiene rubber (SBR) in tire tread. The reinforcing factor, R, R (related to the difference in tan d peak height at Tg for the filled and nonfilled rubbers), also demonstrated that the N234-IIR interaction was stronger than for the silica. IIR with 30 phr N234 exhibited the largest tensile strength, 20.1 MPa, for those vulcanizates examined. The tensile and tear strengths of N234 filled IIR were higher than those of IIR with similar amounts of silica. Thus, it was concluded that N234 is a more active reinforcing filler in IIR than silica (Vulksail N) even with a silane coupling agent (Si-69).  相似文献   

15.
Polymer nanocomposites with ferroelectric fillers are promising materials for modern power electronics that include energy storage devices. Ferroelectric filler, Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) nanopowder, was synthesized by sol-gel method. X-ray diffraction (XRD) studies confirmed the phase purity and the particle size distribution was determined by transmission electron microscopy (TEM). Extended aromatic ligand in the form of naphthyl phosphate (NPh) was chosen for surface passivation of BCZT nanoparticles. Surface functionalization was validated by thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and impedance spectroscopy using slurry technique. The dielectric constant of surface-passivated BCZT nanopowder was ~155, whereas pristine BCZT nanopowder dielectric constant could not be assessed due to high innate surface conductivity. Furthermore, BCZT–epoxy nanocomposite films were prepared and analyzed by differential scanning calorimetry (DSC), dielectric spectroscopy, dielectric breakdown strength (DBS), and scanning electron microscopy (SEM). Owning to stronger polymer–particle interface, dielectric measurements of 5 vol.% NPh surface functionalized BCZT–epoxy nanocomposites indicated improved DBS and glass transition temperature (Tg), reduced dielectric loss, and enhanced energy storage density compared to untreated BCZT–epoxy composites and pure epoxy. The energy storage density of 30 vol.% NPh surface functionalized BCZT–epoxy nanocomposite of 20 μm film thickness was almost three times that of pure epoxy polymer of identical film thickness.  相似文献   

16.
Novel nano-composites of poly (acrylic acid)-kaolinite were prepared, and intercalation and in situ polymerization were used in this process. The nano-composites were obtained by in situ polymerization of acrylic acid (AA) and sodium acrylate (AANa) intercalated into organo-kaolinite, which was obtained by refining and chemically modifying with solution intercalation step in order to increase the basal plane distance of the original clay. The modification was completed by using dimethyl-sulfoxide (DMSO)/methanol and potassium acetate (KAc)/water systems step by step. The materials were characterized with the help of XRD, FT-IR and TEM; the results confirmed that poly(acrylic acid) (PAA) and poly(sodium acrylate) (PAANa) were intercalated into the interlamellar spaces of kaolinite, the resulting copolymer composites (CC0 : copolymer-crude kaolinite composite, CC1 : copolymer-DMSO kaolinite composite, CC2 : copolymer-KAc kaolinite composite) of CC2 exhibited a lamellar nano-composite with a mixed nano-morphology, and partial exfoliation of the intercalating clay platelets should be the main morphology. Finally, the effect of neutralization degree on the intercalation behavior was also investigated.  相似文献   

17.
《Composite Interfaces》2013,20(7):575-586
Lightweight, high mechanical strength insulating materials exhibiting high resistance to corrosion, solvents and abrasive wear are desired for wire and cable insulation as well as protection. Polyethylenes are generally used for such applications owing to their good electrical insulation properties and being inert to solvents at room temperature. However, their abrasion resistance is quite poor. Hence, in the present work, an attempt has been made to improve the abrasive wear resistance of low-density polyethylene (LDPE) by incorporating hollow microspheres, known as cenospheres, in the base polymer to form composites. These cenospheres are obtained from flyash particles, a thermal power plant waste, and do not tend to increase the weight of the polymer composite when used as a filler. The composites were developed by changing the weight fraction of untreated as well as silane treated cenospheres to the extent of 5 wt%. Tribological characterization of these composites was done in abrasive wear mode by varying the operating parameters, such as speed and sliding distance against silicon carbide paper. It was found that 10 wt% silane treated cenosphere filled LDPE composite showed the maximum wear resistance (~×10?11 m3/N m) among the six composites. However, a further increase in filler concentration decreased the wear resistance. The improvement in wear resistance was supported by scanning electron microscopy and attributed to the strong interaction between silane treated cenosphere and LDPE molecules which resisted the elongation and shearing of polymer chains by the abrasive grits.  相似文献   

18.
A new method of silane treatment of nanoclays is reported where in the clay is nanodispersed in hydrolyzed silanes. The surface functionalization of Cloisite® 15A nanoclay has been carried out using two different silane coupling agents: 3-aminopropyltriethoxy silane and 3-glycidyloxypropyltrimethoxy silane using varied amounts of silane coupling agents, e.g. 10, 50, 200, and 400 wt% of clay. The surface modification of Cloisite® 15A has been confirmed by Fourier transform infrared spectroscopy. The modified clays were then dispersed in epoxy resin, and glass fiber-reinforced epoxy clay laminates were manufactured using vacuum bagging technique. The fiber-reinforced epoxy clay nanocomposites containing silane modified clays have been characterized using small angle X-ray scattering, transmission electron spectroscopy and differential scanning calorimetry. The results indicate that the silane treatment of nanoclay aided the exfoliation of nanoclay and also led to an increase in mechanical properties. The optimized amount of silane coupling agents was 200 wt%. The nanocomposites containing clay modified in 200 wt% of silanes exhibited an exfoliated morphology, improved tensile strength, flexural modulus, and flexural strength. The improved interfacial bonding between silane modified nanoclays and epoxy matrix was also evident from significant increase in elongation at break.  相似文献   

19.
Electrodeposition was employed to fabricate magnetite (Fe3O4) coated carbon fibers (MCCFs). Temperature and fiber surface pretreatment had a significant influence on the composition and morphology of Fe3O4 films. Uniform and compact Fe3O4 films were fabricated at 75 °C on both nitric acid treated and untreated carbon fibers, while the films prepared at 60 °C were continuous and rough. Microwave measurements of MCCF/paraffin composites (50 wt.% of MCCFs, pretreated carbon fibers as deposition substrates) were carried out in the 2-18 GHz frequency range. MCCFs prepared at 60 °C obtained a much higher loss factor than that prepared at 75 °C. However, the calculation results of reflection loss were very abnormal that MCCFs prepared at 60 °C almost had no absorption property. While MCCFs prepared at 75 °C exhibited a good absorption property and obtained −10 dB and −20 dB refection loss in wide matching thickness ranges (1.0-6.0 mm and 1.7-6.0 mm range, respectively). A secondary attenuation peak could also be observed when the thickness of MCCF/paraffin composite exceeded 4.0 mm. The minimum reflection loss was lower.  相似文献   

20.
ZnO/ZrO2 nanocomposites with different ZnO: ZrO2 molar ratios (2:1, 1:1, and 1:2)were prepared by sol gel approach under ultrasonic irradiation. For preparation of the nano-composites, the ZnO gel was directly incorporated into the ZrO2 gel at different molar ratios. The reaction mixture was stirred continuously for two days and then it was ultrasonoicated for 30 min. The filtrated composite gel was washed, and then calcinated at 300 °C in furnace for 3 h. X-ray powder diffraction patterns exhibited well-formed crystal structures and pure crystalline phases in the synthesized nanoparticles (NPs). The FT-IR analyses indicated that the positions of peaks related to Zn-O and Zr-O absorption bands did not change in nano-composites. In addition, FESEM images indicated uniform spherical morphology of the NPs. The highest photo-degradation performance of Congo red (as a model water pollutant) was obtained by 1:2molar ratio of ZrO2: ZnO in the nano-composite. The particle size and band gap were considered as important factors on nano-catalysts performance. Furthermore, the effects of ultrasonic irradiation, pH, and the concentration of pollutant in solution were investigated on photocatalytic performance of optimum nanocomposite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号