首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have numerically solved the microscopic equations of Golub for the space and time variations of the order parameter, supercurrent, and normal current within a current biased short superconducting weak link. Two limiting cases are considered. We also use a perturbation method to solve for the I–V characteristics of a weak link, and show that they are cosistent with experiment.  相似文献   

2.
3.
Rekhviashvili  S. Sh.  Pskhu  A. V. 《Technical Physics》2019,64(9):1237-1241
Technical Physics - We propose a method for describing damped vibrations of a beam with a built-in end considering the dynamic hysteresis that determines mechanical energy dissipation due to...  相似文献   

4.
We describe the first observations on the time-dependent dissipation when the drive level of a torsional oscillator containing solid (4)He is abruptly changed. The relaxation of dissipation in solid (4)He shows rich dynamical behavior including exponential and logarithmic time-dependent decays, hysteresis, and memory effects.  相似文献   

5.
P Chaddah  M Manekar 《Pramana》2001,56(5):657-665
We present a model in which metastable supercooled phase and stable equilibrium phase of vortex matter coexist in different regions of a sample. Minor hysteresis loops are calculated with the simple assumption of the two phases of vortex matter having field-independent critical current densities. We use our earlier published ideas that the free energy barrier separating the metastable and stable phases reduces as the magnetic induction moves farther from the first order phase transition line, and that metastable to stable transformations occur in local regions of the sample when the local energy dissipation exceeds a critical value. Previously reported anomalous features in minor hysteresis loops are reproduced, and calculated field profiles are presented.  相似文献   

6.
The understanding of the small-scale termination of the turbulent energy cascade in collisionless plasmas is nowadays one of the outstanding problems in space physics. In the absence of collisional viscosity, the dynamics at small scales is presumably kinetic in nature; the identification of the physical mechanism which replaces energy dissipation and establishes the link between macroscopic and microscopic scales would open a new scenario in the study of turbulent heating in space plasmas. We present a numerical analysis of kinetic effects along the turbulent energy cascade in solar-wind plasmas which provides an effective unified interpretation of a wide set of spacecraft observations and shows that, simultaneously with an increase in the ion perpendicular temperature, strong bursts of electrostatic activity in the form of ion-acoustic turbulence are produced together with accelerated beams in the ion distribution function.  相似文献   

7.
We calculate the non-adiabatic excitations of pair states in a BCS formalism for a fissioning236U nucleus. The single-particle spectrum is calculated for a folded-Yukawa potential along a deformation path that is determined classically for one-body dissipation. The resulting microscopic energy dissipation is compared to that due to one- and two-body dissipation.  相似文献   

8.
Transient accurate numerical simulations of the Wigner function, with emphasis on boundaries, transients, barriers and dissipation are discussed. The absence of dc hysteresis and the presence of transient hysteresis when a double-barrier RTD is subjected to a controlled transient change in applied bias, highlights the nagging issue of the origins of hysteresis.  相似文献   

9.
Energy dissipation of a ring-like metal rubber isolator   总被引:1,自引:0,他引:1       下载免费PDF全文
Metal rubber (MR) is a kind of homogeneous poroelastic damping material made of metal wire. In this paper, by ana- lyzing the forces on the MR isolator and the MR element, the hysteresis loops of the force and deformation are studied and verified by experiments. The results show that the force and displacement hysteresis loop of the MR isolator is described by the force and deformation hysteresis loops of the MR elements. In addition, the relationship between the energy dissipation coefficient of the MR element and that of the MR isolator is derived. The energy dissipation coefficient is programmed and calculated by MATLAB using experimental data, and the results are compared with the theoretical value. It is the basis for the design and applied research of the MR isolator in a future study.  相似文献   

10.
11.
The multifractal link between chaotic time-reversible mechanics and thermodynamic irreversibility is illustrated for three simple chaotic model systems: the Baker Map, the Galton Board, and many-body color conductivity. By scaling time, or the momenta, or the driving forces, it can be shown that the dissipative nature of the three thermostated model systems has analogs in conservative Hamiltonian and Lagrangian mechanics. Links between the microscopic nonequilibrium Lyapunov spectra and macroscopic thermodynamic dissipation are also pointed out. (c) 1998 American Institute of Physics.  相似文献   

12.
Yao Long  Jun Chen 《哲学杂志》2019,99(14):1763-1786
We develop a physical model to describe the microscopic Doppler effect of phonon states in energetic material and use it to investigate the phonon–strain scattering behaviour of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The required elastic constants and force constants are obtained by first-principles calculations. By using the phonon–strain scattering probability, a set of dissipation parameters are calculated, such as the viscosity coefficient, damping rate of elastic wave, and heat dissipation across shock wave front. It is interesting that the Doppler effect could describe the microscopic phonon scattering mechanism reasonably.  相似文献   

13.
Assuming that different energy dissipation mechanisms are at work along hysteresis, a hysteresis loss subdivision procedure has been proposed, using the induction at maximum permeability (around 0.8 T, in electrical steels) as the boundary between the “low-induction” and the “high-induction” regions. This paper reviews the most important results obtained in 10 years of investigation of the effect of microstructure on these components of the hysteresis loss. As maximum induction increases, the “low-induction loss” increases linearly up to 1.2 T, while the “high-induction loss” is zero up to 0.7 T and then increases as a power law with n=5. Low-induction loss behavior is linearly related to Hc between 0.4 and 1.2 T. Grain size has a larger influence on low-induction losses than on high-induction losses. Texture has a much stronger influence on high loss than on low-induction loss, and it is related to the average magnetocrystalline energy. 6.5%Si steel shows smaller hysteresis loss at 1.5 T than 3.5%Si steel only because of its smaler high-induction component. The abrupt increase in hysteresis loss due to very small plastic deformation is strongly related to the high-induction loss component. These results are discussed in terms of energy dissipation mechanisms such as domain wall movement, irreversible rotation and domain wall energy dissipation at domain nucleation and annihilation.  相似文献   

14.
The 2 + 1 dimensional lattice models of Levin and Wen (2005) [1] provide the most general known microscopic construction of topological phases of matter. Based heavily on the mathematical structure of category theory, many of the special properties of these models are not obvious. In the current paper, we present a geometrical space-time picture of the partition function of the Levin-Wen models which can be described as doubles (two copies with opposite chiralities) of underlying anyon theories. Our space-time picture describes the partition function as a knot invariant of a complicated link, where both the lattice variables of the microscopic Levin-Wen model and the terms of the Hamiltonian are represented as labeled strings of this link. This complicated link, previously studied in the mathematical literature, and known as Chain-Mail, can be related directly to known topological invariants of 3-manifolds such as the so-called Turaev-Viro invariant and the Witten-Reshitikhin-Turaev invariant. We further consider quasi-particle excitations of the Levin-Wen models and we see how they can be understood by adding additional strings to the Chain-Mail link representing quasi-particle world-lines. Our construction gives particularly important new insight into how a doubled theory arises from these microscopic models.  相似文献   

15.
In the present work we use computational analysis based on the interacting hysteron model to address the question in how far intrinsic microscopic materials information can be retrieved from magnetic hysteresis loop data. Specifically, the goal is to understand whether it is possible to determine the intrinsic switching field distribution if exchange and magneto-static interactions of variable strength are simultaneously present in the material. We find that due to an existing degeneracy of hysteresis data sets, it is generally not possible to separately determine contributions from exchange and magneto-static interactions, even if the magnetization reversal is only partially correlated. However, the intrinsic switching field distribution could always be accurately determined, as long as the system remains in the uncorrelated or partially correlated magnetization reversal regime.  相似文献   

16.
In contrast with entangled actin solutions, transiently cross-linked actin networks can provide highly elastic properties while still allowing for local rearrangements in the microstructure-on biological relevant time scales. Here, we show that thermal unbinding of transient cross-links entails local stress relaxation and energy dissipation in an intermediate elasticity dominated frequency regime. We quantify the viscoelastic response of an isotropically cross-linked actin network by experimentally tuning the off rate of the transiently cross-linking molecules, their density, and the solvent viscosity. We reproduce the measured frequency response by a semiphenomenological model that is predicated on microscopic unbinding events.  相似文献   

17.
18.
We have studied the dynamics of the contact line of a viscous liquid on a solid substrate with macroscopic random defects. We have first characterized the friction force f0 at microscopic scale for a substrate without defects; f0 is found to be a strongly nonlinear function of the velocity U of the contact line. In presence of macroscopic defects, we find that the applied force F(U) is simply shifted with respect to f0(U) by a constant: we do not observe any critical behavior at the depinning transition. The only observable effect of the substrate disorder is to increase the hysteresis. We have also performed realistic numerical simulation of the motion of the contact line. Using the same values of the parameters as in the experiment, we find that the experimental data is qualitatively well reproduced. In light of experimental and numerical results, we discuss the possibility of measuring a true critical behavior.Received: 6 October 2003, Published online: 19 February 2004PACS: 46.65. + g Random phenomena and media - 64.60.Ht Dynamic critical phenomena - 68.08.Bc Wetting  相似文献   

19.
20.
The effects of adhesion hysteresis in the dynamic‐dissipation curves measured in amplitude‐modulation atomic force microscopy are discussed. Hysteresis in the interaction forces is shown to modify the dynamics of the cantilever leading to different power dissipation curves in the repulsive and attractive regimes. Experimental results together with numerical simulations show that power dissipation, as measured in force microscopy, is not always proportional to the energy dissipated in the tip–sample interaction process. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号