首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The X-ray PhotoElectron Energy Loss Spectroscopy (XP-EELS) and Reflection Electron Energy Loss Spectroscopy (REELS) were used for analysing surface layers of “as-received” and functionalised multiwall carbon nanotubes (MWCNT), and MWCNT decorated with Pd and Pd–Au particles after calcination/reduction. The decorated MWCNT were previously applied as catalysts in a reaction of formic acid electrooxidation. These spectroscopies, used as complementary methods of structural surface analysis, provide information on the energy position, intensity and full width at half maximum of the quasi-elastic peak and inelastic π and π + σ energy loss peaks. Analysing the π + σ energy loss peak, the bulk and surface C sp2/sp3 components can be separated. Functionalisation of MWCNT, catalyst reduction and Ar+ ion sputtering increase the C sp3 content in comparison to the “as-received” MWCNT and calcined catalysts. The intensity ratios of surface and bulk C sp3 and sp2 components evaluated from the REELS π + σ energy loss peak indicate: (i) functionalisation leads to attachment of functional groups to the MWCNT surface, (ii) calcined catalysts show an amorphous carbon overlayer at the surface and (iii) reduction of calcined catalysts leads to increasing C sp3 hybridisations.  相似文献   

2.
Diamondlike films are synthesized from gaseous hydrocarbons in a barrier discharge at atmospheric pressure. The films were investigated using transmission electron microscopy, electron diffraction, and infrared spectroscopy. A technique for determining the quantitative characteristics of the films (hydrogen content, ratio of different types of carbon-carbon bonds and hydrocarbon groups) using standard samples is described. The highest-quality films were obtained from methane (ratio of hydrogen to carbon atoms H/C=1.04, fraction of diamondlike to graphitelike bonds sp 3: sp 2=100%: 0%) and from a mixture of acetylene and hydrogen in the ratio 1:19 (H/C=0.73, sp 3: sp 2=68%: 32%). Zh. Tekh. Fiz. 67, 100–104 (August 1997)  相似文献   

3.
A method is described for the quantification of the sp2, sp3 and intermediate hybridizations in several carbon (C) material samples. Electron energy-loss near-edge spectra were acquired using fast electrons (120 keV) in an electron microscope in nanobeam configuration under the so-called ”magic-angle” condition, and were analysed to extract the sp2 and sp3 fractions, and identify the possible mixed sp2+ε hybridizations. The method consists in projecting the unknown spectra on a basis made up of pure sp2 and sp3 spectra, obtained under the same experimental conditions from graphite and diamond crystals, respectively. The residual spectra contain information about the intermediate hybridizations sp2+ε occurring in the samples. The method was successfully tested on “ab initio” numerically generated spectra relative to amorphous C materials. Finally, it was applied to actual C amorphous and pyrolytic samples, and results were compared to those obtained by the most commonly used, conventional ”three-Gaussian” method. The combined application of electron diffraction and spectroscopy, in the nanobeam configuration, yielded useful information about the atomic and electronic structure from very small volumes of the unknown C material.  相似文献   

4.
The inelastic mean free path (IMFP) of electrons was determined experimentally for selected polyaniline and polyacetylene samples with Ag and Ni references using elastic peak electron spectroscopy (EPES). The surface composition was determined by XPS and density by helium pycnometry. The high resolution hemispherical ESA-31 and ADES-400 spectrometers were used for measurements in the energy range E = 0.5–3.0 keV and E =0.4 − 1.6 keV, respectively. The integrated elastic peak intensity ratios for sample and reference were calculated using the Monte Carlo (MC) algorithm based on the electron elastic scattering cross-sections database NIST SRD64 version 3.1 and applying TPP-2M IMFPs for polymers. Surface excitation parameters (SEP) and material parameters ( ach ) for polymers were determined, using the model of Chen, from comparison of measured and MC calculated elastic peak intensity ratios. These corrections proved to be efficient in decreasing the percentage deviations between the obtained IMFPs and the TPP-2M formula IMFPs. The elastic peak of hydrogen was observed in the EPES spectra of polymers. The experimental contribution of the hydrogen to the total elastic peak was 0.58%, while this value obtained from the MC simulations was 1.98%.   相似文献   

5.
H. Daniels  B. Rand  A. Brown 《哲学杂志》2013,93(27):4073-4092
Electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM) is explored as a useful characterization technique in the study of carbonization and graphitization of organic precursors. A model series of carbon materials was prepared from highly graphitizable petroleum pitch heat treated in the range 200–2730°C. Initial characterization was performed using the established techniques of X-ray diffraction (XRD), He pycnometry, TEM, electron diffraction and high-resolution lattice imaging (HREM). EELS in the TEM was then examined. Two routes are presented to quantify the change in the proportion of sp 2 type hybridization accompanying the heat treatment as the material transforms to the graphitic state. Both routes suggest an initial relative sp 2 content of ~70%, rapidly increasing to ~90% during mesophase development and carbonization, and then slowly increasing to 100% during graphitization. The peak position of the bulk valence plasmon (π?+?σ) is shown to be an excellent measure of the degree of graphitic character, and its fundamental dependence upon sample density (ρ) is confirmed. The appearance and definition of features within the core loss region representing the density of unoccupied σ* states are demonstrated to be an excellent measure of the extent of order. Finally, a method is established by which to extract the C–C bond length from core loss EELS spectra with an accuracy of ±0.1?pm. This method suggests an average bond length of 1.44?Å in samples with low heat treatment temperatures, decreasing to the theoretical length of 1.42?Å as both the heteroatom content and proportion of non-sp 2-type hybridized carbon atoms decrease.  相似文献   

6.
肖剑荣  徐慧  郭爱敏  王焕友 《物理学报》2007,56(3):1802-1808
以CF4,CH4和N2为源气体,利用射频等离子体增强化学气相沉积法,在不同功率下制备了含氮氟化类金刚石膜.用俄歇电子能谱、拉曼光谱、X射线光电子能谱和傅里叶变换红外光谱对薄膜的电子结构和化学键进行了表征,并结合高斯分峰拟合方法分析了薄膜中sp2,sp3结构比率.结果表明,制备的薄膜属于类金刚石结构,不同沉积功率下,薄膜内的sp2/sp3值在2.0—9.0之间,随着沉积功率的增加薄膜内sp2的相对含量增加.膜内主要有C—Fx(x=1,2),C—C,C=C和C≡N等化学键.沉积功率增加,C—C基团增加,膜内F的浓度降低,C—F基团减少,薄膜的关联加强,稳定性提高. 关键词: 含氮氟化类金刚石膜 sp结构 化学键结构 射频功率  相似文献   

7.
Modifications of the photoelectron and C KVV Auger spectra during the long-term surface degradation of partially crystalline PVDF under simultaneous soft X-ray and electron followed by ion irradiation are reported. Deep radiative carbonization brings about the formation of carbynoid structures (chain-like carbon) in the surface, while the number of interchain cross-links is insignificant. As a result, the shape of the electron emission spectra of carbon in the carbonized sample essentially differs from that of graphite and PVDF. The ion bombardment of the carbonized sample destroys one-dimensional structure due to the formation of cross-links. Thus, carbon atoms transit into sp2-hybrid state and, therefore, the photoelectron and Auger spectra show features characteristic for microcrystalline graphite.  相似文献   

8.
Fe-doped hydrogenated amorphous carbon (a-C:H:Fe) films were deposited from a gas mixture of trans-2-butene/ferrocene/H2 by plasma enhanced metal organic chemical vapor deposition. X-ray photoelectron spectroscopy, Fourier transform infrared spectra and Raman spectra were used to characterize the composition and the bonding structure of the a-C:H:Fe and a-C:H films. Optical properties were investigated by the UV–visible spectroscopy and the photoluminescence (PL) spectra. The Fe-doped films contain more aromatic structures and C=C bonds than the undoped films. The sp 2 carbon content and sp 2 clustering of the films increase, and aromatic-like rings’ structures become richer after Fe-doping. The Tauc optical gap of the a-C:H:Fe films become narrower by 0.3 eV relative to the value of the a-C:H films. The PL peak shifts from 2.35 eV of the a-C:H films to 1.95 eV of the a-C:H:Fe films, and the PL intensity of the a-C:H:Fe films is greatly enhanced. A deep level emission peak around 2.04 eV of the a-C:H:Fe films is observed.  相似文献   

9.
Amorphous carbon–sulfur (a-C:S) composite films were prepared by vapor phase pyrolysis technique. The structural changes in the a-C:S films were investigated by electron microscopy. A powder X-ray diffraction (XRD) study depicts the two-phase nature of a sulfur-incorporated a-C system. The optical bandgap energy shows a decreasing trend with an increase in the sulfur content and preparation temperature. This infers a sulfur incorporation and pyrolysis temperature induced reduction in structural disorder or increase in sp 2 or π-sites. The presence of sulfur (S 2p) in the a-C:S sample is analyzed by the X-ray photoelectron spectroscopy (XPS). The sp 3/sp 2 hybridization ratio is determined by using the XPS C 1s peak fitting, and the results confirm an increase in sp 2 hybrids with sulfur addition to a-C. The electrical resistivity variation in the films depends on both the sulfur concentration and the pyrolysis temperature.  相似文献   

10.
Copper containing diamond like carbon (Cu-DLC) thin films were deposited on various substrates at a base pressure of 1×10?3 Torr using a hybrid system involving DC-sputtering and radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD) techniques. The compressive residual stresses of these films were found to be considerably lower, varying between 0.7 and 0.94 GPa and Cu incorporation in these films improve their conductivity significantly. Their structural properties were studied by Raman spectroscopy, atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction techniques that clearly revealed the presence of Cu in the DLC structure. Raman analysis yields that Cu incorporation in DLC enhances the graphite-like sp2 bonding. However, the sp2 bonding was found to continuously reduce with the increasing C2H2 gas pressure, this may be due to reduction of Cu nanocrystal at the higher pressure. FTIR results inferred various bonding states of carbon with carbon, hydrogen and oxygen. In addition, hydrogen content and sp3 and sp2 fractions in different Cu-DLC films were also estimated by FTIR spectra and were correlated with stress, electrical, optical and nano-mechanical properties of Cu-DLC films. The effect of indentation load (4–10 mN) on nano-mechanical properties of these films was also explored.  相似文献   

11.
类金刚石膜不同能量下的离子注入   总被引:3,自引:0,他引:3       下载免费PDF全文
本文对等离子体气相沉积法制备的类金刚石膜(a-C:H)进行了离子注入研究。注入剂量固定为5×105Ar/cm2,注入能量分别为50,100,140和180keV。离子注入前后分别作了红外吸收谱,Raman谱,光学能隙,氢含量和电阻率的测量。结果表明,注入离子破坏了膜中的C—H键,sp2和sp3态都减少,而(sp2/sp3)比值增大;光学能隙Eopt,电阻 关键词:  相似文献   

12.
The effect of substrate bias on X-ray photoelectron spectroscopy (XPS) study of nitrogen incorporated amorphous carbon (a-C:N) films embedded with nanoparticles deposited by filtered cathodic jet carbon arc technique is discussed. High resolution transmission electron microscope exhibited initially the amorphous structure but on closer examination the film was constituted of amorphous phase with the nanoparticle embedded in the amorphous matrix. X-ray diffraction study reveals dominantly an amorphous nature of the film. A straight forward method of deconvolution of XPS spectra has been used to evaluate the sp3 and sp2 contents present in these a-C:N films. The carbon (C 1s) peaks have been deconvoluted into four different peaks and nitrogen (N 1s) peaks have been deconvoluted into three different peaks which attribute to different bonding state between C, N and O. The full width at half maxima (FWHM) of C 1s peak, sp3 content and sp3/sp2 ratio of a-C:N films increase up to −150 V substrate bias and beyond −150 V substrate bias these parameters are found to decrease. Thus, the parameters evaluated are found to be dependent on the substrate bias which peaks at −150 V substrate bias.  相似文献   

13.
Ultraviolet (UV) and visible Raman spectroscopy were used to study a-C:H:N films deposited using ECR-CVD with a mixed gas of CH4 and N2. Small percentage of nitrogen from 0 to 15% is selected. Raman spectra show that CN bonds can be directly observed at 2220 cm−1 from the spectra of visible and UV Raman. UV Raman enhances the sp1 CN peak than visible Raman. In addition, the UV Raman spectra can reveal the presence of the sp3 sites. For a direct correlation of the Raman parameter with the N content, we introduced the G peak dispersion by combining the visible and UV Raman. The G peak dispersion is directly relative to the disorder of the sp2 sites. It shows the a-C:H:N films with higher N content will induce more ordered sp2 sites. In addition, upper shift of T position at 244 nm excitation with the high N content shows the increment of sp2 fraction of films. That means the films with high N content will become soft and contain less internal stress. Hardness test of films also confirmed that more N content is with less hardness.  相似文献   

14.
彭少麒  刘国洪 《物理学报》1988,37(7):1209-1212
本文利用热释氢和红外吸收研究了H在非晶态碳(a-C:H)膜中的含量和组态。实验结果表明,随着样品制备时衬底温度的增大:1)H在a-C:H膜中的组态从两相结构过渡为单相结构;2)H在a-C:H膜中的含量单调减少;3)a-C:H膜中sP3/sP2键合比例单调增大。 关键词:  相似文献   

15.
A methodology is presented to select a consistent method, using electron energy loss spectroscopy (EELS), to extract the fraction of sp2-bonded carbon atoms in carbonaceous materials. According to this methodology, a reliable method has to conjointly fulfill two criteria. The first one consists in verifying, on a perfect graphite sample, that the experimental evolution of R = Iπ*/(Iπ* + Iσ*)-ratios is in good agreement with the one theoretically predicted as a function of experimental settings. The second criterion consists in measuring sp2 fractions in amorphous carbon samples with a minimum of fluctuation. We test three commonly used R-extraction techniques, and we show that they exhibit some failures. We thus implement a more accurate R-extraction process that accounts for the predicted graphite R-evolution and exhibits a low intrinsic 4%-noise, as determined from the sp2 fraction fluctuation. Moreover, we check the transferability of our method on a wide range of EELS spectra, acquired with different experimental resolutions on samples exhibiting various sp2 contents.  相似文献   

16.
Oxygen-related electronic structures of CNTs (carbon nanotubes) grown by rapid thermal chemical vapor deposition (RT-CVD) have been investigated by using partial electron yield near edge X-ray absorption spectroscopy (PEY-NEXAFS) and X-ray photoelectron spectroscopy (XPS). On the CNT surface with increased oxygen resulting from e-beam irradiation under the O2 gas environment, C k-edge NEXAFS spectra showed an increase of the oxygen-related resonance peaks ranging from 287 to 289 eV whereas the sp2 related peak at 285.4 eV was nearly unchanged. After the complete removal process of the oxygen atom on the surface by annealing the sample at 500 °C for 30 min, C K-edge spectra showed an abrupt decrease of the oxygen-related resonance peaks in 287-289 eV and an increase of the sp2 related peak at 285.4 eV, indicating that the degree of crystallinity in the CNT sample was improved.  相似文献   

17.
Diamond-like carbon (DLC) is an attractive biomedical material due to its high inertness and excellent mechanical properties. In this study, DLC films were fabricated on Ti6Al4V and Si(1 0 0) substrates at room temperature by pulsed vacuum arc plasma deposition. By changing the argon flow from 0 to 13 sccm during deposition, the effects of argon flow on the characteristics of the DLC films were systematically examined to correlate to the blood compatibility. The microstructure and mechanical properties of the films were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) surface analysis, a nano-indenter and pin-on-disk tribometer. The blood compatibility of the films was evaluated using in vitro platelet adhesion investigation, and the quantity and morphology of the adherent platelets was investigated employing optical microscopy and scanning electron microscopy.The Raman spectroscopy results showed a decreasing sp3 fraction (an increasing trend in ID/IG ratio) with increasing argon flow from 0 to 13 sccm. The sp3:sp2 ratio of the films was evaluated from the deconvoluted XPS spectra. We found that the sp3 fraction decreased as the argon flow was increased from 0 to 13 sccm, which is consistent with the results of the Raman spectra. The mechanical properties results confirmed the decreasing sp3 content with increasing argon flow. The Raman D-band to G-band intensity ratio increased and the platelet adhesion behavior became better with higher flow. This implies that the blood compatibility of the DLC films is influenced by the sp3:sp2 ratio. DLC films deposited on titanium alloys have high wear resistance, low friction and good adhesion.  相似文献   

18.
Amorphous carbon (a-C) films obtained by pulsed-laser ablation of graphite have been investigated by X-ray Absorption Spectroscopy (XAS). The onset of 1s * transitions in the films lies in the gap between the * and * bands in graphite and very close to the absorption edge of diamond, indicating a high content ofsp 3 hybridization. A sharp feature at this onset is observed and assigned to a core exciton insp 3-hybridized disordered C atoms. Its shift of 0.5 eV with respect to the core exciton in diamond is probably due to a higher localization of the excited electron induced by disorder. A small peak coming from C–H bonds at the surface is observed and its intensity inereases with the amount ofsp 3-hybridized atoms in the sample. This can be easily explained by associating a higher amount of dangling bonds at the surface to a highersp 3 content. Polarization-dependent XAS measurements show that the angular distribution of these C–H bonds has a mean value close to the normal to the surface.  相似文献   

19.
Carbon nitride films were deposited by pulsed laser ablation of a graphite target under a nitrogen atmosphere at room temperature. A direct current discharge apparatus was used to supply active nitrogen species during the deposition of carbon nitride films. The composition and bonding structure of carbon nitride films were determined by Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy. The incorporation of nitrogen atoms in the films is greatly improved by the using of a dc glow discharge. The ratio N/C can reach 0.34 at the discharge voltage of 400 V. Six peaks centered at 1025 cm-1, 1226 cm-1, 1381 cm-1, 1534 cm-1, 1629 cm-1, and 2200 cm-1 can be clearly distinguished from the FTIR spectra of the deposited films, which indicates the existence of C–N, C=N, and C≡N bonds. The fraction of sp2 C, C≡N bonds, and C=N bonds in the deposited films increases with increasing discharge voltage. Deconvolution results of C 1s and N 1s spectra also indicate that nitrogen atoms in the films are chemically bonded to sp1 C, sp2 C, and sp3 C atoms. Most of the nitrogen atoms are bonded to sp2 C atoms. Increasing the discharge voltage leads to a decrease of the fraction of nitrogen atoms bonded to sp2 C and the fraction of amorphous carbon; however, it leads to an increase of the fraction of nitrogen atoms bonded to sp3 C and the fraction of sp2 C and sp3 C atoms bonded to nitrogen atoms. Received: 7 June 2000 / Accepted: 19 February 2001 / Published online: 27 June 2001  相似文献   

20.
It has been studied how photoelectron and CKVV spectra of partially crystalline poly(vinylidene fluoride) (PVDF) are modified during a long-term degradation of its surface under soft X-rays (AlK α), which is accompanied by a flow of secondary electrons having different energies, and upon exposure to a unfocused beam of 600 eV Ar+ ions. In both cases, the surface layer of the sample is enriched with carbon owing to defluorination. The shape of the electron emission spectra of the carbonized layer depends on an external effect; that is, whether soft X-ray photons or ions are used for defluorination. In the case of bombardment with Ar+, there is clear evidence for the dominance of the sp2 bonds between carbon atoms, as can be seen from the specific shape of the C KVV band and the C1s spectrum. The most surprising result of this study is that both photons and ions produce the same depth gradient of residual fluorine at an equal fluorine concentration in the carbonized surface layer. The reason for this is not clear and needs further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号