首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The infrared spectra of MgO smoke exposed to water are compared to high-resolution electron energy loss spectra (HREELS) of hydroxylated ultrathin MgO(1 0 0)/Ag(1 0 0) films. Very similar bands are observed at 3458–3480 cm?1 and 3710–3714 cm?1. On the basis of first principle calculations, these bands are interpreted as the stretching modes of the two distinct OH groups that are formed at monatomic steps parallel to 〈1 0 0〉 crystallographic directions. The lower frequency band is due to H adsorbed on O at the step edge, while the higher frequency one originates from OH groups that are twofold coordinated with Mg. Consistently, scanning tunnelling microscopy images of MgO films, prepared in similar conditions as during the HREELS experiments, show that the MgO/Ag(1 0 0) island edges are mainly non-polar, i.e. oriented along the 〈1 0 0〉 direction. In spite of that, a minor contribution to the OH-stretch intensity from hydroxylated polar 〈1 1 0〉 steps cannot be excluded; for such geometry density functional theory predicts indeed a single OH species with a vibrational frequency very close to the high-frequency band of OH adsorbed at 〈1 0 0〉 steps.  相似文献   

2.
Circumferential magnetization curves have been derived from the imaginary component of the impedance response in an Fe73.5Si13.5B9Cu1Nb3 amorphous wire. Measurements were performed at 1 kHz driving frequency, and 0.05– 20 mArms current amplitude range. Axial DC fields from 0 to 100 Oe have been simultaneously applied in order to detect the magnetoinductive effect. The circular magnetization curves are compared with quasi-static longitudinal magnetization ones, and the results are analyzed on the basis of the core-shell model for a wire with positive magnetostriction.  相似文献   

3.
《Ultrasonics》2014,54(1):296-304
This paper investigates a new method for fabrication of broadband line-focus ultrasonic transducers by sol–gel spin-coating the poly(vinylidene difluoride-trifluroethylene) [P(VDF-TrFE)] copolymer film on a concave fine-polished beryllium copper backing. The ferroelectric hysteresis loops of the P(VDF-TrFE) films spin-coated from different molar ratios of VDF/TrFE, 77/23 and 55/45, were measured to select the better mixture. Owing to the better acoustic matching to water, compared with lead zirconate titanate (PZT), the fabricated transducers show relatively wide bandwidth of approximately 50 MHz with high central frequency of 60 MHz obtained at the focal plane when a fused-quartz acts as a reflecting target. Each one of the two finished transducers has a focal length of 5 mm and a full aperture angle of 90°. After applying the specially developed digital signal processing algorithm to the defocusing experiment data, which is called V(f,z) analysis method based on two-dimensional fast Fourier transform (2-D FFT), the operating frequency can extend from several MHz to over 90 MHz. Surface acoustic wave (SAW) velocities of a typical (1 0 0) silicon wafer was measured along various directions between [1 0 0] and [0 1 0] to represent the anisotropic features.  相似文献   

4.
Rui Li  Jing-jing Ge  Zhao-Qi Wang 《Optik》2012,123(4):343-347
The neural contrast sensitivity function (NCSF) of human eye at temporal frequencies is acquired with a new method in this paper. Firstly the human eye's contrast sensitivity function (CSF) at temporal frequencies is measured by means of travelling-wave stimuli, and the modulation transfer function (MTF) of the eye's optics is obtained by constructing the eye model of the subject. Then the NCSF at temporal frequencies is calculated with the two functions. It is shown that the overall value of the NCSF decreases as the temporal frequency increases. As the temporal frequency increases from 0 cycles per second (c/s) to 1 c/s, 16 c/s and 30 c/s, the NCSF curve changes from the band-pass shape to the low-pass, and then to almost monotonic variation. The attenuation factor of the NCSF, which represents the sensitivity of visual neural system to the temporal frequency, varies little as spatial frequency increases, while that of the CSF declines dramatically in the region of high spatial frequencies. Because it is the NCSF, rather than the CSF, that reflects the characteristics of visual neural system, the investigation of the NCSF at temporal frequency is more essentially.  相似文献   

5.
Silicon micro cantilevers are used as highly sensitive transducers for a wide range of physical, chemical and biochemical stimuli. Vibrating the cantilevers at higher-order resonant modes can achieve extra sensitivity, but the difficulty lies in determining exactly which modes are excited in the cantilever. This problem is exacerbated for cantilever sensors operating in liquid where the computational analysis of the resonance modes is very challenging. Using strobed interferometric microscopy, we are able to image the dynamic behavior of individual (100×500×1 μm3) cantilevers in an eight cantilever array over frequencies from 0–1 MHz. We show how some modifications to the interferometric microscope allow for the spatial visualization of 16 longitudinal modes of cantilevers working in liquid with nanometer-scale amplitudes. We also compare the shift in frequency response and reduction in quality factor for cantilevers resonating in liquid versus in air and simulations in vacuum. Because the resonant frequency spectrum is fairly complex and does not follow simple intuition, our work maps the actual behavior of cantilevers without having any specific knowledge of the sample and environment parameters and without the necessity of involved simulations and calculations.  相似文献   

6.
A novel photonic scheme of microwave signal frequency measurement with adjustable measurement range and resolution is proposed and experimentally demonstrated. The proposed scheme is based on simultaneous optical phase modulation and intensity modulation with interferometric detection. A low-pass frequency response is achieved by a Mach–Zehnder interferometer (MZI) while a bandpass frequency response is produced by a polarizer placed on the back instead of in front of the MZI. The microwave frequency can be estimated by the measured amplitude comparison function (ACF) obtained from the ratio of the two frequency responses. This scheme is simple, cost-effective as it requires no extra laser sources or modulators in the basic analog modulation link. The measurement errors as shown in experimental results can be kept in 0.1 GHz over a frequency range of 0.1–8.5 GHz.  相似文献   

7.
A wireless sensing method for the measurement of gamma radiation dose has been developed based on the fact that gamma rays can initiate the polymerization of acrylamide, which causes an increase in solution viscosity that can be detected with a wireless magnetoelastic sensor. The magnetoelastic sensor is able to wirelessly detect the resonance frequency shifts of a magnetoelastic foil in response to changes in solution viscosity. There is a linear relationship between the resonance frequency shift and gamma radiation dose in the range of 0–50 Gy (under optimal conditions) with a detection limit of 0.25 Gy. This method has the advantage of providing real-time, continuous measurement in situ. The method has been used successfully to determine the gamma radiation dose in real exposure scenarios, with satisfactory results.  相似文献   

8.
A distributed fiber sensing system merging Mach–Zehnder interferometer and phase-sensitive optical time domain reflectometer (Φ-OTDR) is demonstrated for vibration measurement, which requires wide frequency response and accurate location. Two narrow line-width lasers with delicately different wavelengths are used to constitute the interferometer and reflectometer respectively. A narrow band Fiber Bragg Grating is responsible for separating the two wavelengths. In addition, heterodyne detection is applied to maintain the signal to noise rate of the locating signal. Experiment results show that the novel system has a wide frequency from 1 Hz to 50 MHz, limited by the sample frequency of data acquisition card, and a spatial resolution of 20 m, according to 200 ns pulse width, along 2.5 km fiber link.  相似文献   

9.
A novel pendulum-type vibration isolation system is proposed consisting of three active cables with embedded piezoelectric actuators and a passive elastomer layer. The dynamic response of the isolation module in the vertical and horizontal directions is modeled using the Lagrangian approach. The validity of the dynamic model is confirmed by comparing the simulation results for the frequency response in the vertical and horizontal directions with the experimental results. An approximate model is proposed to take into account system uncertainties such as payload changes and hysteresis effects. A robust quantitative feedback theory (QFT)-based active controller is then designed to ensure that the active control can achieve a high level of disturbance rejection in the low-frequency range even under variable loading conditions. It is shown that the controller achieves average disturbance rejection of ?14 dB in the 2–60 Hz bandwidth range and ?35 dB at the resonance frequency. The experimental results confirm that the proposed system achieves a robust vibration isolation performance under the payload in the range of 40–60 kg.  相似文献   

10.
In this work we investigated the photoluminescence response in the frequency domain modulated infrared radiometry signal observed of ZnTe:Cr bulk crystal. In mid-infrared range, three characteristic phenomena are observed in ZnTe:Cr crystal: absorption and emission of IR photons (2–3 μm) and the free carrier absorption. This implies that the modulated infrared radiometry signal yields information about the effective infrared absorption coefficient (photothermal response) as well about the recombination lifetime of carriers related with the infrared photoluminescence emission. In this paper, the frequency equivalence of the two-term independent exponential photoluminescence decay model in order to explain the measured frequency characteristics is proposed. The measured recombination lifetimes (2.3 μs for two exponential decay model and 1.5 μs for one exponential decay model) are in good agreement with the values given by other authors (about 2.5–3.0 μs). Moreover, we found that the photothermal response is uncorrelated with the photoluminescence one, in contrast, to the photocarrier response.  相似文献   

11.
Polymer composites of a polyester resin matrix filled with short palm tree lignocellulosic fibers were studies by means of dielectric spectroscopy in the frequency range 0, 1–100 kHz and temperature interval from 40 °C to 200 °C. Three relaxations processes were identified, namely the orientation polarization imputed to the presence of polar water molecules in Palm fiber, the relaxation process associated with conductivity occurring as a result of the carriers charges diffusion noted for high temperature above glass transition and low frequencies, and the interfacial relaxation that is attributable to the accumulation of charges at the Palm fibers/polyester interfaces.  相似文献   

12.
The effect of orientation on the frequency of the radial breathing mode (RBM) of silicon nanowires (SiNWs) is investigated by means of the first principles Density Functional Theory approach through the generalized gradient approximation. We compare the RBM frequency of SiNWs orientated in three different directions, [0 0 1], [1 1 1], and [1 1 0]. The RBM is observed by the calculation of the phonon band structure and density of states of the SiNWs through the supercell finite displacement method. Results show that the SiNWs are stable in the three chosen directions since there are no negative frequencies in their phonon band structure and density of states. A clear dependence of the RBM frequency with respect to the growth direction of the nanowires and the phonon confinement was observed as the RBM frequency decreased with an inverse power law in each nanowire direction, with the fitting parameters dependent on the growth direction. These results are important since they could be used as a fingerprint to identify them within different spectroscopy techniques such as Raman.  相似文献   

13.
We theoretically investigate the modulation efficiency, response time, and pump power of a terahertz-beam intensity modulator by using an organic photonic crystal slab structure with high quality factor “defect” cavity. The basic operation of an ultrafast low-power terahertz wave modulator actuated by the dynamical shifts of the defect mode induced by pump intensity is discussed in detail. The finite-difference time-domain method is used to verify and analyze the characteristics of the terahertz wave modulator. The device exhibited extinction ratio of 47.15 dB and insertion loss of 3.2 dB at frequency of 1.062 THz with ultrafast response times on the order of several picoseconds.  相似文献   

14.
Yuh Ming Hsu  Chung Cheng Chang 《Optik》2012,123(18):1627-1631
In this study, the oscillation conditions for series photodetector frequency circuit system were proposed and verified experimentally. The effect of the capacitance Cp and oscillator phase θ on the oscillation ability of series photodetector frequency circuit system was investigated. It revealed that series photodetector frequency circuit system possessed excellent oscillation ability, but the oscillation ability decreased with increasing oscillator phase or decreasing capacitance Cp, even resulted in a cease-to oscillate zone. Moreover, this study elucidated the frequency response and optical detection of series photodetector frequency circuit system matched with PMMA for fluorescence dye concentration. In accordance with Hex fluorescence dye concentrations and frequency responses, the detection limit of fluorescence dye concentration 3.3 pmol/L can be measured by 100 MHz sensor system matched with PMMA. The results also showed that the frequency shift of 100 MHz sensor system matched with PMMA was linearly related to the logarithm of fluorescence dye concentration from 3.3 pmol/L to 33.3 μmol/L.  相似文献   

15.
《Ultrasonics sonochemistry》2014,21(6):2138-2143
The delivery of a consistent quality product to the consumer is vitally important for the food industry. The aim of this study was to investigate the potential for using high frequency ultrasound applied to pre- and post-rigor beef muscle on the metabolism and subsequent quality. High frequency ultrasound (600 kHz at 48 kPa and 65 kPa acoustic pressure) applied to post-rigor beef striploin steaks resulted in no significant effect on the texture (peak force value) of cooked steaks as measured by a Tenderometer. There was no added benefit of ultrasound treatment above that of the normal ageing process after ageing of the steaks for 7 days at 4 °C. Ultrasound treatment of post-rigor beef steaks resulted in a darkening of fresh steaks but after ageing for 7 days at 4 °C, the ultrasound-treated steaks were similar in colour to that of the aged, untreated steaks. High frequency ultrasound (2 MHz at 48 kPa acoustic pressure) applied to pre-rigor beef neck muscle had no effect on the pH, but the calculated exhaustion factor suggested that there was some effect on metabolism and actin-myosin interaction. However, the resultant texture of cooked, ultrasound-treated muscle was lower in tenderness compared to the control sample. After ageing for 3 weeks at 0 °C, the ultrasound-treated samples had the same peak force value as the control. High frequency ultrasound had no significant effect on the colour parameters of pre-rigor beef neck muscle. This proof-of-concept study showed no effect of ultrasound on quality but did indicate that the application of high frequency ultrasound to pre-rigor beef muscle shows potential for modifying ATP turnover and further investigation is warranted.  相似文献   

16.
Acoustic emissions were characterized for fourteen, 8 × 8 arrays of axisymmetric supersonic jets experimentally. The nozzle diameters ranged from 3.2 mm (1/8 in.) to 6.4 mm (1/4 in.) and the hole-to-hole spacing (S) over hole diameter (d), or the S/d ratios ranged from 1.44 to 3. The arrays were tested at several net pressure ratios ranging from 2 to 24. It was found that up to a critical net pressure ratio, the arrays radiated ultrasonic frequencies. Beyond this critical net pressure ratio the characteristic frequency decreased to lie within the audible range. Frequency response plots of the sound pressure indicate a broadband frequency peak generated by the turbulent mixing noise of the jet. At lower net pressure ratio (NPR) values, this broadband peak is similar to a single jet within the jet array. However, as the NPR continues to increase this frequency peak shifts to lower values which are similar to a single jet with an equivalent exit area of the entire array. Dimensional analysis revealed that at a critical net pressure ratio a dramatic reduction in the characteristic Strouhal number occurred. A small increase in the characteristic acoustic pressure was also observed at net pressure ratios below the critical net pressure ratio and a larger increase was observed at higher net pressure ratios. The critical net pressure ratio appeared to be a linear function of S/d for the nozzle arrays. A linear curve fit was applied to the measured critical net pressure ratio and this was compared to a theoretical model prediction. The experimental results revealed that the critical net pressure ratio is well predicted by the models.  相似文献   

17.
The exceedingly fragile nature of thermally grown Au-black coating makes handling and patterning a critical issue. Infrared absorption characteristics of near atmospheric, N2 ambient DC sputtered Au thin films are studied for this purpose. The thin Au films are sputtered at different chamber pressures in Ar and N2/Ar gas ambient from 4.5 to 8.0 mbar and optimized for enhanced infrared absorption. The absorber film sputtered in N2/Ar ambient at 8.0 mbar chamber pressure offers significant absorption of medium to long wave infrared radiations. The micro-patterning of sputtered Au thin film is carried out by using conventional photolithography and metal lift off methods on a prefabricated µ-infrared detector array on Si (1 0 0) substrate. The steady state temperature response of sputtered film has been examined using nondestructive thermal imaging method under external heating of the detector array.  相似文献   

18.
We use experimental results of low signal impedance spectroscopy to investigate the conduction mechanism in organic semiconductor, zinc phthalocyanine (ZnPc). The first 10 nm, of a total of 150 nm thermally deposited ZnPc, was doped with molybdenum oxide (MoO3) by co-evaporation to obtain a 20% doping concentration. The ac electrical parameters were measured at room temperature in the dc bias and frequency ranges of 0–5 V and 100 Hz–0.1 MHz, respectively. The variation of bulk resistance with applied bias presents a clear indication of space charge limited conduction in the fabricated device. The experimental results show a strong frequency dependence of capacitance and loss tangent at low frequencies and high applied bias, while at higher frequencies and low applied bias a weak dependence is observed. Moreover, the ac conductivity shows a strong dependence on frequency and is found to vary as ωs with the index s≤1.15 suggesting a dominant hopping mechanism of conduction.  相似文献   

19.
Magnetic and magneto-optical properties of MnSb films with different crystalline orientations on various semiconductors of GaAs(1 0 0), GaAs(1 1 1)A, B, and sapphire(0 0 0 1) have been measured by a vibrating sample magnetometer (VSM) and a home-made magneto-optical Kerr effect (MOKE) system. All these samples have their easy axes in the plane and show ferromagnetic properties. Among these samples, the film on GaAs(1 1 1)B has the lowest coercive force Hc and the largest squareness (SQ) value, whereas the film on GaAs(1 0 0) shows the largest Hc and the lowest SQ value. A large Kerr rotation angle of about 0.3° was observed at a wavelength of λ=632.8 nm for the film on sapphire in the field applied both parallel and perpendicular to the film plane. However, the MnSn films on other substrates do not have an observable Kerr rotation. The dynamic effect of the hysteresis was also measured using our MOKE system. As the frequency of applied magnetic field increases, the loop rounds off at the corners and the loop area increases.  相似文献   

20.
The vibration of backrests contributes to the discomfort of drivers and passengers. A frequency weighting exists for evaluating the vibration of vertical backrests but not for reclined backrests often used during travel. This experimental study was designed to determine how backrest inclination and the frequency of vibration influence perception thresholds and vibration discomfort when the vibration is applied normal to the back (i.e. fore-and-aft vibration when seated upright and vertical vibration when fully reclined). Twelve subjects experienced the vibration of a backrest (at each of the 11 preferred one-third octave centre frequencies in the range 2.5–25 Hz) at vibration magnitudes from the threshold of perception to 24 dB above threshold. Initially, absolute thresholds for the perception of vibration were determined with four backrest inclinations: 0° (upright), 30°, 60° and 90° (recumbent). The method of magnitude estimation was then used to obtain judgements of vibration discomfort with each of the four backrest angles. Finally, the relative discomfort between the four backrest angles, and the principal locations for feeling vibration discomfort in the body, were determined. With all backrest inclinations, absolute thresholds for the perception of vibration acceleration were dependent on the frequency of vibration. As the backrest inclination became more horizontal, the thresholds increased at frequencies between 4 and 8 Hz. For all backrest inclinations, the rate of growth of discomfort with increasing magnitude of vibration was independent of the frequency of vibration, so the frequency-dependence of discomfort was similar over the range of magnitudes investigated (0.04–0.6 m s?2 rms). With an upright backrest, the discomfort caused by vibration acceleration tended to be greatest at frequencies less than about 8 Hz. With inclined backrests (at 30°, 60°, and 90°), the equivalent comfort contours were broadly similar to each other, with greatest discomfort caused by acceleration around 10 or 12.5 Hz. At frequencies from 4 to 8 Hz, 30–40 percent greater magnitudes of vibration were required with the three inclined backrests to cause discomfort equivalent to that caused by the upright backrest. It is concluded that with an upright backrest the frequency weighting Wc used in current standards is appropriate for predicting the discomfort caused by fore-and-aft backrest vibration. With inclined and horizontal backrests, a weighting similar to frequency weighting Wb (used to predict discomfort caused by vertical seat vibration) appears more appropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号