首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes an attempt to produce NdFeB magnets that are insensitive to the sintering temperature. It was found that addition of Zr to NdFeB magnets significantly augmented the thermal stability of this magnetic material during sintering at high temperature even at industrial scale. The best sintered magnets were produced by jet-milling the powder (to achieve an average 3.4 μm particle size), and then aligned, pressed and sintered under argon at 1100 °C for 3 h followed by appropriate heat treatment. The magnetic properties of the resulting magnets were: (BH)m=403.8 kJ m−3 (±4.7 kJ m−3), Br=1430 mT (±9 mT) and iHc=907 kA m−1 (±12 kA m−1). Large grain growth, in excess of 100 μm in the Zr-free magnets, was observed during sintering at 1100 °C. This did not occur in the presence of Zr. These observations imply that the sensitivity of this class of magnets to high sintering temperatures is greatly reduced by Zr addition. Corrosion resistance of NdFeB was therefore significantly improved by the addition of small amounts of Zr.  相似文献   

2.
A two-step approach is proposed to derive component aerosol direct radiative forcing (ADRF) at the top of atmosphere (TOA) over global oceans from 60°S to 60°N for clear-sky condition by combining Terra CERES/MODIS-SSF shortwave (SW) flux and aerosol optical thickness (AOT) observations with the fractions of component AOTs from the GSFC/GOCART model. The derived global annual mean component ADRF is +0.08±0.17 W/m2 for black carbon, −0.52±0.24 W/m2 for organic carbon, −1.10±0.42 W/m2 for sulfate, −0.99±0.37 W/m2 for dust, −2.44±0.84 W/m2 for sea salt, and −4.98±1.67 W/m2 for total aerosols. The total ADRF has also been partitioned into anthropogenic and natural components with a value of −1.25±0.43 and −3.73±1.27 W/m2, respectively. The major sources of error in the estimates have also been discussed. The analysis adds an alternative technique to narrow the large difference between current model-based and observation-based global estimates of component ADRF by combining the satellite measurement with the model simulation.  相似文献   

3.
Adsorption (at a low temperature) of nitrogen on the protonic zeolite H-FER results in hydrogen bonding of the adsorbed N2 molecules with the zeolite Si(OH)Al Brønsted acid groups. This hydrogen bonding interaction leads to activation, in the IR, of the fundamental NN stretching mode, which appears at 2331 cm−1. From the infrared spectra taken over a temperature range, while simultaneously recording integrated IR absorbance, temperature and nitrogen equilibrium pressure, the thermodynamics of the adsorption process was studied. The standard adsorption enthalpy and entropy resulted to be ΔH° = −20(±1) kJ mol−1 and ΔS° = −131(±10) J mol−1 K−1, respectively.  相似文献   

4.
Long period gratings (LPGs) were written into a D-shaped optical fibre that has an elliptical core with a W-shaped refractive index profile and the first detailed investigation of such LPGs is presented. The LPGs’ attenuation bands were found to be sensitive to the polarisation of the interrogating light with a spectral separation of about 15 nm between the two orthogonal polarisation states. A finite element method was successfully used to model many of the behavioural features of the LPGs. In addition, two spectrally overlapping attenuation bands corresponding to orthogonal polarisation states were observed; modelling successfully reproduced this spectral feature. The spectral sensitivity of both orthogonal states was experimentally measured with respect to temperature and bending. These LPG devices produced blue and red wavelength shifts depending upon the orientation of the bend with measured maximum sensitivities of −3.56 and +6.51 nm m, suggesting that this type of fibre LPG may be useful as a shape/bend orientation sensor with reduced errors associated with polarisation dependence. The use of neighbouring bands to discriminate between temperature and bending was also demonstrated, leading to an overall curvature error of ±0.14 m−1 and an overall temperature error of ±0.3 °C with a maximum polarisation dependence error of ±8 × 10−2 m−1 for curvature and ±5 × 10−2 °C for temperature.  相似文献   

5.
Highly conducting and transparent thin films of molybdenum-doped indium oxide were deposited on quartz by pulsed laser deposition. The effect of growth temperature and oxygen partial pressure on the structural, optical and electrical properties was studied. We find that the film transparency depends on the growth temperature. The average transmittance of the films grown at different temperatures is in range of 48-87%. The X-ray diffraction results show that the films grown at low temperature are amorphous while the films grown at higher temperature are crystalline. Electrical properties are found to be sensitive to both the growth temperature and oxygen pressure. Resistivity of the films decreases from 1.3 × 10−3 Ω cm to 8.9 × 10−5 Ω cm while mobility increases from 9 cm2/V s to 138 cm2/V s as the growth temperature increases from room temperature to 700 °C. However, with increase in oxygen pressure, resistivity increases but the mobility decreases after attaining a maximum. The temperature-dependent resistivity measurements show transition form semiconductor to metallic behavior. The film grown at 500 °C under an oxygen pressure of 1.0 × 10−3 mbar is found to exhibit high mobility (250 cm2/V s), low resistivity (6.7 × 10−5 Ω cm), and relatively high transmittance (∼90%).  相似文献   

6.
Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10−6 mbar in the temperature range from 400 to 800 °C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J × cm−2 has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated.Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature.  相似文献   

7.
The transport of Na through the polycrystalline ceramic arc tube of high intensity discharge lamps has been investigated. This complex process consists of several steps: solution in the ceramics, diffusion through the ceramics, leaving the bulk phase, evaporation from the surface. Among the listed processes the kinetics of the diffusion was examined in the temperature range 400-1200 °C, separately from other disturbing effects. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) were used to determine the concentration depth profiles. The obtained results confirmed that the grain boundary diffusion plays an important role in the transport process of sodium through the ceramic wall. The bulk and the grain boundary diffusion coefficients and the temperature dependencies of these transport processes have been determined. The activation energy of Na bulk diffusion is 56.5 ± 6.7 kJ/mol at 900-1200 °C, respectively the activation energies of Na grain boundary diffusion amount to 97.5 ± 21.6 kJ/mol in the temperature range 700-1100 °C and 7.7 ± 4.0 × 10−2 kJ/mol at 400-700 °C. The preexponential factor of the bulk diffusion was found to be Do = 5.1 × 10−15 ± 9.5 × 10−17 cm2/s in the temperature range 900-1200°C, whereas the preexponential factors of grain boundary diffusion are Do = 1.1 × 10−10 ± 1.1 × 10−11 cm2/s at 700-1100 °C and Do = 7.5 × 10-15 ± 1.5 × 10−17 cm2/s at 400-700 °C.  相似文献   

8.
A polyol synthesis of silver nanoparticles in the presence of ultrasonic irradiation was compared with other configurations (at ambient temperature, 120 °C, and 120 °C with injected solutions) in the absence of ultrasonic irradiation in order to obtain systematic results for morphology and size distribution. For applying ultrasonic irradiation, rather fine and uniform spherical silver particles (21 ± 3.7 nm) were obtained in a simple (at ambient temperature without mechanical stirring) and fast (within 4 min, 3.61 × 10−3 mol min−1) manner than other cases (at ambient temperature (for 8 h, 0.03 × 10−3 mol min−1): 86 ± 16.8 nm, 120 °C (for 12 min, 1.16 × 10−3 mol min−1): 64 ± 14.9 nm, and 120 °C with injected solutions (during 12 min): 35 ± 6.8 nm; all other cases contained anisotropic shaped particles). Even though the temperature of polyol reaction reached only at 80 °C (<120 °C) in the presence of ultrasonic irradiation, a uniform mixing (i.e. enhanced collision between silver particle and surrounding components) by ultrasonic irradiation might induce a better formation kinetics and morphological uniformity.  相似文献   

9.
Coercivity enhancement of Dy-free Nd–Fe–Co–B–Ga–Zr powders was studied using the conventional hydrogenation–decomposition–desorption–recombination (HDDR) process. It was found that the addition of Al together with the proper Nd content and the slow hydrogen desorption of the HDDR treatment can induce high coercivity in the powder. For example, the 14.0 at% Nd–2.0 at% Al powder exhibits HcJ of 1560 kA/m, Br of 1.22 T, and (BH)max of 257 kJ/m3. The high coercivity inducement of the powder is thought to be attributed to the formation of Nd-rich phase, which continuously surrounds fine Nd2Fe14B grains.  相似文献   

10.
A series of iron- and/or aluminium-doped apatite-type lanthanum silicates (ATLS) La9.83Si6 ‐ x ‐ yAlxFeyO26 ± δ (x = 0, 0.25, 0.75, and 1.5, y = 0, 0.25, 0.75, and 1.5) were synthesized using the mechanochemical activation (MA), solid state reaction (SSR), Pechini (Pe) and sol-gel (SG) methods. The total conductivity of the prepared materials was measured under air in the temperature range 600-850 °C using 4-probe AC impedance spectroscopy. Its dependence on composition, synthesis method, sintering conditions and powder particle size was investigated. It was found that for electrolytes of the same composition, those prepared via mechanochemical activation exhibited the highest total specific conductivity, which was improved with increasing Al- and decreasing Fe-content. The highest conductivity value at 700 °C, equal to 2.04 × 10− 2 S cm− 1, was observed for the La9.83Si5Al0.75Fe0.25O26 ± δ electrolyte. La9.83Si4.5Fe1.5O26 ± δ electrolyte samples synthesized using the Pechini method exhibited higher conductivity when sintered conventionally than when spark-plasma sintering (SPS) was used.  相似文献   

11.
Using cherry stones, the preparation of activated carbon has been undertaken in the present study by chemical activation with potassium hydroxide. A series of KOH-activated products was prepared by varying the carbonisation temperature in the 400-900 °C range. Such products were characterised texturally by gas adsorption (N2, −196 °C), mercury porosimetry, and helium and mercury density measurements. FT-IR spectroscopy was also applied. The carbons prepared as a rule are microporous and macroporous solids. The degree of development of surface area and porosity increases with increasing carbonisation temperature. For the carbon heated at 900 °C the specific surface area (BET) is 1624 m2 g−1, the micropore volume is 0.67 cm3 g−1, the mesopore volume is 0.28 cm3 g−1, and the macropore volume is 1.84 cm3 g−1.  相似文献   

12.
The chemomechanical properties and microstructural stability of nanocrystalline PrxCe1 − xO2 − δ solid solutions are studied as a function of temperature by in situ X-ray diffraction measurements under oxidizing conditions at P(O2) ~ 200 mbar. The chemical expansion coefficient of nanocrystalline powder specimens, operative at intermediate temperatures during which Pr4+ is reduced to Pr3+, is found to be similar to that obtained for coarse-grained PrxCe1 − xO2 − δ. This is contrary to reports regarding variation of physical and chemical properties with crystallite size. The thermal expansion coefficient, measured under conditions for which PrxCe1 − xO2 − δ is highly oxygen deficient, was found to be greater than that measured for fully oxidized PrxCe1 − xO2 − δ, with potential sources of these changes discussed. Moreover, the microstructure of nanocrystalline PrxCe1 − xO2 − δ is observed to have excellent stability at working temperatures below 800 °C, enabled by the inherent microstrain in the structure, highlighting the potential application of this material for solid state electrochemical devices.  相似文献   

13.
The grain boundary groove shapes for solid aminomethylpropanediol in equilibrium with eutectic aminomethylpropanediol-neopentylglycol liquid were directly observed by using a horizontal temperature gradient stage. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient, solid-liquid interfacial energy and grain boundary energy of solid aminomethylpropanediol in equilibrium with eutectic aminomethylpropanediol-neopentylglycol liquid have been determined to be (5.3 ± 0.5) × 10−8 K m, (8.5 ± 1.3) × 10−3 J m−2 and (16.8 ± 2.9) × 10−3 J m−2, respectively.  相似文献   

14.
The equilibrated grain boundary groove shapes for solid Sn in equilibrium with the Sn-9 at.% Mg eutectic liquid were directly observed annealing a sample at the eutectic temperature for about 5 days with a radial heat flow apparatus. The thermal conductivities of the solid phase, κS, and the liquid phase, κL, for the groove shapes were measured. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient, the solid-liquid interfacial energy and grain boundary energy for solid Sn in equilibrium with the Sn-9 at.% Mg eutectic liquid have been determined to be (7.35 ± 0.36) × 10−8 Km, (136.41 ± 13.64) × 10−3 J m−2 and (230.95 ± 25.40) × 10−3 J m−2, respectively.  相似文献   

15.
Ni-Co films with different compositions and microstructures were produced on ITO glasses by electrodeposition from sulphate bath at 25 °C. Cyclic voltammograms give a result that the increase in the Co2+ concentration displaces Ni-Co alloy oxidation peaks to negative potential with high Co current distributions. It is observed that the content of cobalt in the films increases from 22.42% to 56.09% as the molar ratio of CoSO4/NiSO4 varying from 0.015/0.085 to 0.045/0.055 in electrolyte. XRD patterns reveal that the structure of the films strongly depends on the Co content in the deposited films. The saturation magnetization (Ms) moves up from 144.84 kA m−1 to 342.35 kA m−1 and coercivity (Hc) falls from 15.27 kA m−1 to 7.27 kA m−1 with the heat treatment temperature increasing from 25 °C to 450 °C. The saturation magnetization (Ms) and coercivity (Hc) move up from 340.97 kA m−1 and 7.98 kA m−1 to 971.58 kA m−1 and 18.62 kA m−1 with the Co content increasing from 22.42% to 56.09% after annealing at 450.  相似文献   

16.
Activated carbons were prepared by air and carbon dioxide activation, from almond tree pruning, with the aim of obtaining carbons that reproduce the textural and mechanical properties of the carbons currently used in the filtering system of the condenser vacuum installation of a Thermonuclear Plant (CNA; Central Nuclear de Almaraz in Caceres, Spain), produced from coconut shell. The variables studied in non-catalytic gasification series with air were the temperature (215-270 °C) and the time (1-16 h) and the influence of the addition of one catalyst (Co) and the time (1-2 h) in catalytic gasification. In the case of activation with CO2, the influence of the temperature (700-950 °C) and the time (1-8 h) was studied. The resulting carbons were characterized in terms of their BET surface, porosity, and pore size distribution. The N2 adsorption isotherms at 77 K for both series showed a type I behaviour, typical of microporous materials. The isotherms showed that with both gasificant agents the temperature rise produced an increase in the carbon porosity. With regards to the activation time, a positive effect on the N2 adsorbed volume on the carbons was observed. The best carbons of each series, as well as the CNA (carbon currently used in the CNA), were characterized by mercury porosimetry and iodine solution adsorption isotherms. The results obtained allowed to state that several of the carbons produced had characteristics similar to the carbon that is target of reproduction (which has SBET of 741 m2 g−1, Vmi of 0.39 cm3 g−1 and a iodine retention capacity of 429.3 mg g−1): carbon C (gasification with CO2 at 850 °C during 1 h), with SBET of 523 m2 g−1, Vmi of 0.33 cm3 g−1 and a iodine retention capacity of 402.5 mg g−1, and carbon D (gasification with CO2 at 900 °C during 1 h), whose SBET is 672 m2 g−1, Vmi is 0.28 cm3 g−1 and has a iodine retention capacity of 345.2 mg g−1.  相似文献   

17.
ZrO2 thin films were deposited at various oxygen partial pressures (2.0 × 10−5-3.5 × 10−1 mbar) at 973 K on (1 0 0) silicon and quartz substrates by pulsed laser deposition. The influence of oxygen partial pressure on structure, surface morphology and optical properties of the films were investigated. X-ray diffraction results indicated that the films are polycrystalline containing both monoclinic and tetragonal phases. The films prepared in the oxygen partial pressures range 2.0 × 10−5-3.5 × 10−1 mbar contain nanocrystals of sizes in the range 54-31 nm for tetragonal phase. The peak intensity of the tetragonal phase decreases with the increase of oxygen partial pressures. Surface morphology of the films examined by AFM shows the formation of nanostructures. The RMS surface roughness of the film prepared at 2.0 × 10−5 mbar is 1.3 nm while it is 3.2 nm at 3.5 × 10−1 mbar. The optical properties of the films were investigated using UV-visible spectroscopy technique in the wavelength range of 200-800 nm. The refractive index is found to decrease from 2.26 to 1.87 as the oxygen partial pressure increases from 2.0 × 10−5 to 3.5 × 10−1 mbar. The optical studies show two different absorption edges corresponding to monoclinic and tetragonal phases.  相似文献   

18.
A new type of curvature sensor comprises a stub of multi-mode fiber and an up-taper is proposed and demonstrated experimentally. The whole fabrication process is quite simple and the sensor head is cost effective. Measurement results show that it has a maximum curvature sensitivity of −61.877 nm/m−1 at 1.1718 m−1 (the highest value of reported papers among in-fiber Mach–Zehnder interferometers) and −9.2115 nm/m−1 from 0.865 m−1 to 1.1172 m−1. Temperature sensitivity of 89.01 pm/°C within the range of 20–80 °C has also been achieved, which implies the possibility for measurement of temperature.  相似文献   

19.
The preparation of nano-sized BaCeO3 powder using starch as a polymerization agent is described herein. Phase evolution during the decomposition process of a (BaCe)-gel was monitored by XRD. A phase-pure nano-sized BaCeO3 powder was obtained after calcining of the (BaCe)-gel at 920 °C. The resulting powder has a specific surface area of 15.4 m2/g. TEM investigations reveal particles mainly in the size range of 30 to 65 nm. The shrinkage and sintering behavior of resulting powder compacts were studied in comparison to a coarse-grained mixed-oxide BaCeO3 powder (SBET = 2.1 m2/g). Dilatometric measurements show that the beginning of shrinkage of compacts from the nano-sized powder is downshifted by 300 °C compared to mixed-oxide powder. Compacts from the nano-sized powder reach a relative density of 91% after sintering at 1450 °C for 10 h.  相似文献   

20.
This paper investigates the structure and surface characteristics, and electrical properties of the polycrystalline silicon-germanium (poly-Si1−xGex) alloy thin films, deposited by vertical reduced pressure CVD (RPCVD) in the temperature range between 500 and 750 °C and a total pressure of 5 or 10 Torr. The samples exhibited a very uniform good quality films formation, with smooth surface with rms roughness as low as 7 nm for all temperature range, Ge mole fraction up to 32% (at 600 °C), textures of 〈2 2 0〉 preferred orientation at lower temperatures and strong 〈1 1 1〉 at 750 °C, for both 5 and 10 Torr deposition pressures. The 31P+ and 11B+ doped poly-Si1−xGex films exhibited always lower electrical resistivity values in comparison to similar poly-Si films, regardless of the employed anneal temperature or implantat dose. The results indicated also that poly-Si1−xGex films require much lower temperature and ion implant dose than poly-Si to achieve the same film resistivity. These characteristics indicate a high quality of obtained poly-Si1−xGex films, suitable as a gate electrode material for submicron CMOS devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号