首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 550 毫秒
1.
This Letter investigates the function projective synchronization of different chaotic systems with unknown parameters. By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the states of two different chaotic systems asymptotically synchronized up to a desired scaling function. Numerical simulations on Lorenz system and Newton-Leipnik system are presented to verify the effectiveness of the proposed scheme.  相似文献   

2.
In this paper, a two-input two-output secure communication scheme based on a four-wing four-dimensional chaotic system with disturbance inputs is discussed. Based on parameter modulation theory and Lyapunov stability theory, synchronization and secure communication between transmitter and receiver are achieved and two message signals are recovered via a convenient robust high-order sliding mode adaptative controller. In addition, the gains of the receiver system can be adjusted continually, the unknown parameters can be identified precisely and the disturbance inputs can be suppressed simultaneously by the proposed adaptative controller. Synchronization under the effect of noise is also considered. Computer simulations are done to verify the proposed methods and the numerical results show that the obtained theoretic results are feasible and efficient.  相似文献   

3.
In verifying and validating models of nonlinear processes it is important to incorporate information from observations in an efficient manner. Using the idea of synchronization of nonlinear dynamical systems, we present a framework for connecting a data signal with a model in a way that minimizes the required coupling yet allows the estimation of unknown parameters in the model. The need to evaluate unknown parameters in models of nonlinear physical, biophysical, and engineering systems occurs throughout the development of phenomenological or reduced models of dynamics. Our approach builds on existing work that uses synchronization as a tool for parameter estimation. We address some of the critical issues in that work and provide a practical framework for finding an accurate solution. In particular, we show the equivalence of this problem to that of tracking within an optimal control framework. This equivalence allows the application of powerful numerical methods that provide robust practical tools for model development and validation.  相似文献   

4.
In this Letter, an adaptive control scheme is developed to study the anti-synchronization behavior between two identical and different chaotic systems with unknown parameters. This adaptive anti-synchronization controller is designed based on Lyapunov stability theory and an analytic expression of the controller with its adaptive laws of parameters is shown. The adaptive anti-synchronization between two identical systems (Chen system) and different systems (Genesio and Lü systems) are taken as two illustrative examples to show the effectiveness of the proposed method. Theoretical analysis and numerical simulations are shown to verify the results.  相似文献   

5.
This work is concerned with the general methods for modified projective synchronization of hyperchaotic systems. A systematic method of active control is developed to synchronize two hyperchaotic systems with known parameters. Moreover, by combining the adaptive control and linear feedback methods, general sufficient conditions for the modified projective synchronization of identical or different chaotic systems with fully unknown or partially unknown parameters are presented. Meanwhile, the speed of parameters identification can be regulated by adjusting adaptive gain matrix. Numerical simulations verify the effectiveness of the proposed methods.  相似文献   

6.
This work is concerned with lag projective synchronization of chaotic systems with increasing order. The systems under consideration have unknown parameters and different structures. Combining the adaptive control method and feedback control technique, we design a suitable controller and parameter update law to achieve lag synchronization of chaotic systems with increasing order. The result is rigorously proved by the Lyapunov stability theorem. Moreover, corresponding simulation results are given to verify the effectiveness of the proposed methods.  相似文献   

7.
Y. Wu 《Physics letters. A》2008,372(5):623-630
The stationary response of multi-degree-of-freedom (MDOF) vibro-impact (VI) systems to random pulse trains is studied. The system is formulated as a stochastically excited and dissipated Hamiltonian system. The constraints are modeled as non-linear springs according to the Hertz contact law. The random pulse trains are modeled as Poisson white noises. The approximate stationary probability density function (PDF) for the response of MDOF dissipated Hamiltonian systems to Poisson white noises is obtained by solving the fourth-order generalized Fokker-Planck-Kolmogorov (FPK) equation using perturbation approach. As examples, two-degree-of-freedom (2DOF) VI systems under external and parametric Poisson white noise excitations, respectively, are investigated. The validity of the proposed approach is confirmed by using the results obtained from Monte Carlo simulation. It is shown that the non-Gaussian behaviour depends on the product of the mean arrival rate of the impulses and the relaxation time of the oscillator.  相似文献   

8.
9.
Paulo C. Rech 《Physics letters. A》2008,372(24):4434-4437
We study a pair of asymmetrically coupled identical chaotic quadratic maps. We investigate, via numerical simulations, chaos suppression associated with the variation of both parameters, the coupling parameter and the parameter which measures the asymmetry. This is a new technique recently introduced for chaos suppression in continuous systems and, as far we know, not yet tested for discrete systems. Parameter-space regions where the chaotic dynamics is driven towards regular dynamics are shown. Lyapunov exponents and phase-space plots are also used to characterize the phenomenon observed as the parameters are changed.  相似文献   

10.
Five interesting experiments have been done for a class of chaos synchronization systems with unknown parameters and unknown control directions. And three important conclusions about parameters identification have been made. First, a necessary and sufficient condition for parameters identification is obtained. Second, a Nussbaum method is proposed to solve the problem of unknown control direction. Third, the adaptive method is not infinitely effective considered for our current ability of computation and simulation algorithm.  相似文献   

11.
It has been proposed to obtain the discrete-time models of switching dynamical systems by observing the states at the switching instants. Apart from the lowering of dimension, such switching maps or impact maps offer advantage in modeling systems that exhibit chattering. In this Letter we derive the nature of the switching map for the special case of grazing orbits. We show that the map is discontinuous in the neighborhood of a grazing orbit, and that it has a square root slope singularity on one side of the discontinuity. We illustrate the above by obtaining the switching maps for two example systems: the Colpitt's oscillator in the electrical domain and the soft impact oscillator in the mechanical domain.  相似文献   

12.
This Letter further investigates the full state hybrid projective synchronization (FSHPS) of chaotic and hyper-chaotic systems with fully unknown parameters. Based on the Lyapunov stability theory, a unified adaptive controller and parameters update law can be designed for achieving the FSHPS of chaotic and/or hyper-chaotic systems with the same and different order. Especially, for two chaotic systems with different order, reduced order MFSHPS (an acronym for modified full state hybrid projective synchronization) and increased order MFSHPS are first studied in this Letter. Five groups numerical simulations are provided to verify the effectiveness of the proposed scheme. In addition, the proposed FSHPS scheme is quite robust against the effect of noise.  相似文献   

13.
Chaos synchronization of two different chaotic systems with known and unknown parameters is studied. Based on the Lyapunov stability theory, two different chaotic systems with known parameters realize global synchronization via the successfully designed nonlinear controller. By employing an adaptive synchronization scheme, the synchronization of two different chaotic systems with unknown parameters is achieved. Numerical simulations validate the effectiveness of the theoretical analysis.  相似文献   

14.
We investigate the synchronous dynamics of Kuramoto oscillators and van der Pol oscillators on Watts-Strogatz type small-world networks. The order parameters to characterize macroscopic synchronization are calculated by numerical integration. We focus on the difference between frequency synchronization and phase synchronization. In both oscillator systems, the critical coupling strength of the phase order is larger than that of the frequency order for the small-world networks. The critical coupling strength for the phase and frequency synchronization diverges as the network structure approaches the regular one. For the Kuramoto oscillators, the behavior can be described by a power-law function and the exponents are obtained for the two synchronizations. The separation of the critical point between the phase and frequency synchronizations is found only for small-world networks in the theoretical models studied.  相似文献   

15.
Controlling chaos by a modified straight-line stabilization method   总被引:4,自引:0,他引:4  
By adjusting external control signal, rather than some available parameters of the system, we modify the straight-line stabilization method for stabilizing an unstable periodic orbit in a neighborhood of an unstable fixed point formulated by Ling Yang et al., and derive a more simple analytical expression of the external control signal adjustment. Our technique solves the problem that the unstable fixed point is independent of the system parameters, for which the original straight-line stabilization method is not suitable. The method is valid for controlling dissipative chaos, Hamiltonian chaos and hyperchaos, and may be most useful for the systems in which it may be difficult to find an accessible system parameter in some cases. The method is robust under the presence of weak external noise. Received 10 January 2001  相似文献   

16.
We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator.  相似文献   

17.
We explain the functional projective lag synchronization of a hyperchaotic Rössler system with four unknown parameters, where the output of the master system lags behind the output of the slave system proportionally. Based on Lyapunov stability theory, an active control method and adaptive control law are employed to make the states of two hyperchaotic Rössler systems asymptotically synchronized. Finally, some numerical examples are provided to show the effectiveness of our results.  相似文献   

18.
We propose a parametric approach to solve self-consistency equations that naturally arise in many-body systems described by nonlinear Fokker-Planck equations in general and nonlinear Vlasov-Fokker-Planck equations of Haissinski type in particular. We demonstrate for the Hess-Doi-Edwards model and the McMillan model of nematic and smectic liquid crystals that the parametric approach can be used to compute bifurcation diagrams and critical order parameters for systems exhibiting one or more than one order parameters. In addition, we show that in the context of the parametric approach solutions of the Haissinski model can be studied from the perspective of a pseudo order parameter.  相似文献   

19.
Considering a set of two coupled nonautonomous differential equations with discontinuous right-hand sides describing the behavior of a DC/DC power converter, we discuss a border-collision bifurcation that can lead to the birth of a two-dimensional invariant torus from a stable node equilibrium point. We obtain the chart of dynamic modes and show that there is a region of parameter space in which the system has a single stable node equilibrium point. Under variation of the parameters, this equilibrium may disappear as it collides with a discontinuity boundary between two smooth regions in the phase space. The disappearance of the equilibrium point is accompanied by the soft appearance of an unstable focus period-1 orbit surrounded by a resonant or ergodic torus.Detailed numerical calculations are supported by a theoretical investigation of the normal form map that represents the piecewise linear approximation to our system in the neighbourhood of the border. We determine the functional relationships between the parameters of the normal form map and the actual system and illustrate how the normal form theory can predict the bifurcation behaviour along the border-collision equilibrium-torus bifurcation curve.  相似文献   

20.
This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号