首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Surfaces of 6H-SiC(0001) homoepitaxial layers deposited on vicinal (3.5° off (0001) towards [11 0]) and on-axis 6H---SiC wafers by chemical vapour deposition have been investigated using ultra-high vacuum scanning tunneling microscopy. Undulating step configurations were observed on both the on-axis and the vicinal surfaces. The former surface possessed wider terraces than the latter. Step heights on both surfaces were 0.25 nm corresponding to single bilayers containing one Si and one C layer. After annealing at T>1100°C for 3–5 min in UHV, selected terraces contained honeycomb-like regions caused by the transformation to a graphitic surface as a result of Si sublimation. A model of the observed step configuration has been proposed based on the observation of the [ 110] or [1 10] orientations of the steps and energetic considerations. Additional deposition of very thin (2 nm) SiC films on the above samples by gas source molecular beam epitaxy was performed to observe the evolution of the surface structure. Step bunching and growth of 6H---SiC layers and formation of 3C---SiC islands were observed on the vicinal and the on-axis surfaces, respectively, and controlled by the diffusion lengths of the adatoms.  相似文献   

2.
Adsorption of Au at 850°C on a regular stepped 4° vicinal Si(0 0 1) surface results in a dramatic change of the step morphology: the surface decomposes into areas which are perfectly flat with a (0 0 1) orientation and (1 1 9) facets. Low energy electron microscopy shows the dynamics of the faceting process in real space while X-ray photoemission electron microscopy (XPEEM) allows a spatially resolved determination of the Au coverage at different stages of the faceting process. At a critical Au coverage of ≈1/3 ML (0 0 1) terraces are formed which extend anisotropically along the step edges of the surface. The steps in between the terraces bunch and form step bands in order to conserve the macroscopic miscut of the sample. Driving force for this morphological transformation is a complex (5×3.2) reconstruction formed on the (0 0 1) terraces. XPEEM shows this phase separation also for the Au coverage: on the (0 0 1) terraces the Au coverage is up to 40% higher compared to the step bands. With further increasing Au coverage the width of the Au rich terraces increases while the step bands become steeper. In a second step Au adsorbs on the step bands transforming them into well defined and smooth (1 1 9) facets.  相似文献   

3.
An effective way to prepare atomically-ordered rutile TiO2(1 1 0) surfaces that have distinct step and terrace structures suitable for oxide thin film deposition is demonstrated. Only a two-step procedure, consisting of 20% HF etching and UHV-annealing at 1100 °C, was required to yield a clean (1 × 1) structure with step and terrace structures. Investigation of the surface using scanning tunneling microscopy, low-energy electron diffraction, and Auger electron spectroscopy reveals that carbon contamination is removed at around 800 °C, and straight steps with clear terraces appear at around 1000 °C.  相似文献   

4.
The surface structure and properties of the HfB2(0 0 0 1) (Hafnium diboride, HfB2) surface have been investigated with X-ray photoelectron spectroscopy, low energy electron diffraction (LEED), and scanning tunneling microscopy (STM). Annealing temperatures above 1900°C produce a sharp (1×1) LEED pattern, which corresponds to STM images showing flat (0 0 0 1) terraces with a very low contamination level separated by steps 3.4 Å in height, corresponding to the separation of adjacent Hf planes in the HfB2 bulk structure. For lower annealing temperatures, extra p(2×2) spots were observed with LEED, which correspond to intermediate terraces of a p(2×1) missing row structure as observed with STM.  相似文献   

5.
Deposition of Ni as contact on 4H–SiC has been investigated. Ni/4H–SiC samples were annealed at temperatures of 600, 800 and 950 °C for 30 min and were non-destructively characterized by soft X-ray emission spectroscopy (SXES) using synchrotron radiation as excitation. Si L2,3 SXE showed the formation of Ni2Si for all annealing temperatures. The C K SXE indicated the formation of graphite and graphitic carbons at annealing temperatures of 950 °C and below 800 °C, respectively.  相似文献   

6.
We have conducted a soft X-ray emission spectroscopy (SXES) and a photoemission electron microscopy (PEEM) study on the heat-treated Ti/4H–SiC system. This spectro-microscopy approach is an ideal surface and interface characterization techniques due to the non-destructive nature of SXES and the real-time surface imaging of PEEM.

The Si L2,3 and C K soft X-ray emission spectra, which reflect Si (s+d) states and C p states, respectively, revealed formations of Ti5Si3 and TiC in the reacted interfacial region of Ti (50 nm)/4H–SiC(0 0 0 1) sample.

The surface of the Ti films on 4H–SiC samples during heat-treatment up to 850 °C was investigated by PEEM. The variation in brightness in the image of the sample was attributed to the surface deoxidation in the early stage of the treatment and to the formation of reacted region at the later stage. The darkening of the surface could be attributed to the formation of TiC and/or excess C atoms that could have migrated to the surface.  相似文献   


7.
Ultrathin layers of cerium oxide have been deposited on a Rh(1 1 1) surface and their growth morphology, structure, and thermal stability have been investigated by LEED, STM, XPS, and valence band resonant photoemission. STM and LEED indicate that the ceria grows epitaxially in form of ordered CeO2 islands at elevated substrate temperature (250–300 °C), with (1 1 1) faces parallel and orientationally aligned to the main azimuthal directions of the substrate. The ultrathin ceria films contain significant amounts of reduced Ce3+ species, which appear to be located predominantly at the ceria–Rh interface. For thicker films (>6 equivalent monolayers) stoichiometric CeO2 is detected in XPS. Vacuum annealing produces morphologically well-defined hexagonal islands, accompanied by partial reduction and the formation of oxygen vacancies at the ceria surface. The thermal stability and the degree of reduction is a function of the oxide layer thickness, with thinner layers being thermally less stable. At temperatures >800 °C, the ceria decomposes and Ce–Rh alloy phases are identified.  相似文献   

8.
Morphology of high-vacuum deposited rubrene thin films on the annealed (0 0 0 1) vicinal sapphire surfaces was studied by atomic force microscopy in non-contact mode. Atomic force microscopy images of rubrene thin films indicate that a regular array of steps on the sapphire surface acts as a template for the growth of the arrays of rubrene nanosize wires. To further demonstrate that morphological features of a substrate are crucial in determining the morphology of rubrene layers we have grown rubrene on the sapphire surfaces that were characterized by the terrace-and-step morphology with islands. We have found preferential nucleation of rubrene molecules at the intersection between a terrace and a step, as well as around the islands located on terraces.  相似文献   

9.
M.C. Xu  Y. Temko  T. Suzuki  K. Jacobi   《Surface science》2005,580(1-3):30-38
The evolution of two-dimensional (2D) strained InAs wetting layers on GaAs(0 0 1), grown at different temperatures by molecular beam epitaxy, was studied by in situ high-resolution scanning tunneling microscopy. At low growth temperature (400 °C), the substrate exhibits a well-defined GaAs(0 0 1)-c(4 × 4) structure. For a disorientation of 0.7°, InAs grows in the step-flow mode and forms an unalloyed wetting layer mainly along steps, but also in part on the terrace. The wetting layer displays some local c(4 × 6) reconstruction, for which a model is proposed. 1.2 monolayer (ML) InAs deposition induces the formation of 3D islands. At a higher temperature (460 °C), the wetting layer is obviously alloyed even at low InAs coverage. The critical thickness of the wetting layer for the 2D-to-3D transition is shifted to 1.50 ML in this case presumably since the strain is reduced by alloying.  相似文献   

10.
Si(1 0 0) surfaces were prepared by wet-chemical etching followed by 0.3–1.5 keV Ar ion sputtering, either at elevated or room temperature (RT). After a brief anneal under ultrahigh vacuum (UHV) conditions, the resulting surfaces were examined by scanning tunneling microscopy. We find that wet-chemical etching alone cannot produce a clean and flat Si(1 0 0) surface. However, subsequent 300 eV Ar ion sputtering at room temperature followed by a 700 °C anneal yields atomically clean and flat Si(1 0 0) surfaces suitable for nanoscale device fabrication.  相似文献   

11.
Impact of step height of silicon carbide (SiC) substrates on heteroepitaxial growth of aluminum nitride (AlN) was investigated. Step-and-terrace structures with various step heights, 6 monolayer (ML), 3ML and 1ML, were formed on 6H-SiC (0 0 0 1) vicinal substrates by high-temperature gas etching. 2H-AlN layers were grown on the substrate by plasma-assisted molecular-beam epitaxy (MBE) and then these layers were characterized by atomic-force microscopy (AFM) and X-ray diffraction (XRD). High-quality AlN can be grown on SiC substrates with 6ML- and 3ML-height step, while AlN grown on SiC substrates with 1ML-height step exhibited inferior crystalline quality. A model for high-quality AlN growth on SiC substrates with 3ML-height step is proposed.  相似文献   

12.
The surface morphology of yttria stabilized zirconia (YSZ)(1 0 0) single crystals are examined by AFM and XPS before and after thermal annealing in air to 1000 °C. The surfaces show a large variability in topography which can be categorized in three types: (1) surfaces with well defined terraces, (2) surfaces with etch pits and no visible terraces, (3) surfaces with large square or rectangular holes with flat bottoms. All three types of surfaces show a large number of defects (pits, adatoms, steps) originating from the manufacturing process, and certain samples show large nano-structured arrays of self-organized lines at step edges. The evolution of the surfaces with time at 1000 °C and with higher temperatures was studied. Terraces are ultimately obtained for all sample types at 1300 °C, but the terrace shape is affected by the original defect structure. This history dependence is attributed to defect interactions modifying the annealing process. This is true even for UHV samples prepared using sputter-anneal cycles. The surface type is found to affect the nucleation, growth and sintering behaviour of palladium deposited by electron beam evaporation. For type 3 samples the metal nucleates at step edges outside the holes to particles 6 Å in height, following heating to 135 °C the particles move inside the holes forming agglomerates up to 20 Å.  相似文献   

13.
The local adsorption geometry of CO adsorbed in different states on Ni(1 0 0) and on Ni(1 0 0) precovered with atomic hydrogen has been determined by C 1s (and O 1s) scanned-energy mode photoelectron diffraction, using the photoelectron binding energy changes to characterise the different states. The results confirm previous spectroscopic assignments of local atop and bridge sites both with and without coadsorbed hydrogen. The measured Ni–C bondlengths for the Ni(1 0 0)/CO states show an increase of 0.16 ± 0.04 Å in going from atop to bridge sites, while comparison with similar results for Ni(1 1 1)/CO for threefold coordinated adsorption sites show a further lengthening of the bond by 0.05 ± 0.04 Å. These changes in the Ni–CO chemisorption bondlength with bond order (for approximately constant adsorption energy) are consistent with the standard Pauling rules. However, comparison of CO adsorbed in the atop geometry with and without coadsorbed hydrogen shows that the coadsorption increases the Ni–C bondlength by only 0.06 ± 0.04 Å, despite the decrease in adsorption energy of a factor of 2 or more. This result is also reproduced by density functional theory slab calculations. The results of both the experiments and the density functional theory calculations show that CO adsorption onto the Ni(1 0 0)/H surface is accompanied by significant structural modification; the low desorption energy may then be attributed to the energy cost of this restructuring rather than weak local bonding.  相似文献   

14.
Surface diffusion during decay of a two-dimensional nano-island formed on Si(1 0 0) surface at 750-800 K is studied using STM and a kinetic Monte Carlo simulation. From a surface diffusion point of view, decay proceeds so that the total diffusion rate of atoms on a surface decreases. Atoms at step edges move more frequently than terrace atoms, which results in decay from step edges of the island. In addition, a terrace atom takes part in surface diffusion in the same way as an atom from steps of the island once it hops up on a terrace leaving a vacancy. The mass transport is not a specific atom process but terrace atoms and vacancies on the terrace are involved. Repeated upward and downward hops of atoms and their difference are combined with surface diffusion, which leads to the mass transport. Some tracks of atom using simulation show random walk with preferential diffusion along step edges, re-entering to the island, exchange of diffusing atom and filling in a vacancy on the terrace. The motion of the center of the island to the upper side of the terrace observed by STM is also well reproduced in the simulation.  相似文献   

15.
Solid-like structures formed on the graphite basal surface following the liquid-phase adsorption of n-octylamine have been studied using tapping-mode atomic force microscopy. Following deposition of a 1 μl droplet and subsequent annealing at 100°C, the amine formed randomly distributed islands categorised into two types based upon the morphology at the vapour interface. Evidence was found for the parallel orientation of the molecular axis at the basal plane, the orientation anticipated from studies of other aliphatic molecules. The results suggest the formation of vertically oriented molecular clusters at the vapour interface. Similarities were found with previous results of the adsorption of n-alkanes at the basal surface, highlighting the importance of n-alkyl chain interactions. Similarities and differences were observed between amine and alkane behaviour at the graphite steps. Annealing at 200°C reduced the island coverage, particularly at steps, and at 300°C no decoration was observed on the surface. The activation energy for surface diffusion and the energy difference between surface and vapour molecules are estimated. Upon deposition of a 5 μl droplet of amine onto graphite, an aggregate morphology decorated terraces and steps. Measurements suggest that the aggregate surface consisted of molecular clusters oriented towards the surface normal.  相似文献   

16.
The local geometry of OH fragments adsorbed on the Ge(0 0 1)(2 × 1) surface has been examined using O 1s scanned energy mode photoelectron diffraction. These fragments were obtained by the dissociative reaction of the clean surface with H2O. The Ge–O bond length is found to be 1.76 ± 0.02 Å and the Ge–O bond angle to be 15° ± 2° relative to the surface normal. Some information about the positions of the Ge dimer atoms has also been obtained.  相似文献   

17.
Different growth mode have been observed for InGaAs/InP grown with trimethylarsine and arsine by Metalorganic Vapor Phase Epitaxy (MOVPE) when changing the carrier gas. The surface has been investigated by Atomic Force Microscope (AFM) for epilayers grown at 600°C under pure hydrogen or a mixture of hydrogen and nitrogen as carrier gas. The step/terrace surface morphology was observed for InP/InP and InGaAs/InP (001) using 0.2° off substrates. InP epilayers grown under nitrogen flow show step-bunched terraces as large as 170 nm. The effect of the group V source for InGaAs/InP has been studied. It is shown that the step edge characteristic of step flow growth appears for lattice-matched InGaAs/InP grown with arsine. When using TMAs and hydrogen as a carrier gas, the growth mode and surface roughness depends greatly on V/III ratio and growth temperature. Under nitrogen flow with the combination of TMI+TMG+TMAs, pit-like defects (5–8 nm deep) are visible at high surface concentration (109–1010/cm2). When increasing V/III ratio, 3D growth occurs simultaneously with pit-like defects, recovering the whole surface of the sample. Various surface morphology characteristics of InGaAs epilayers assessed by AFM characterisation will be presented and discussed.  相似文献   

18.
The thickness of the altered layer created by ion bombardment of the 6H–SiC single crystal was determined by means of Auger electron spectroscopy (AES) depth profiling in conjunction with factor analysis. After pre-bombardment of the surface by argon ions with energies 1, 2 and 4 keV until the steady state, the depth profiles of the induced altered layers were recorded by sputtering with low energy argon ions of 300 eV. Since the position and shape of the carbon Auger peak depend on the perfection of the crystalline structure, they were used for depth profile evaluation by factor analysis. In this way the depth profiles of the damaged surface region could be estimated in dependence on the ion energy. As a result, the thickness of the altered layer of SiC bombarded with 1, 2 and 4 keV Ar ions using an incident angle of 80° as well as the corresponding argon implantation profile could be measured.  相似文献   

19.
R. Kato  M. Uwaha  Y. Saito 《Surface science》2004,550(1-3):149-165
We consider the wandering instability of steps due to a gap in the lifetime of adatoms for evaporation on the upper and the lower terraces. Our study is meant to explain the step wandering observed in the growth of Si(1 1 1) surface near its structural transition temperature. With a linear stability analysis and Monte Carlo simulations, we show that the instability of an isolated step occurs in growth if adatoms on the upper terrace evaporate more easily than those on the lower terrace. For the instability of a vicinal face, additional features are considered as the motion of the phase boundary and the mass flow across it during the phase transformation. It is found that steps and phase boundaries wander in-phase with a rather well-defined periodicity when evaporation is weak. We compare the result with that for a system with a gap in the diffusion coefficient. The simulation results show that the first mechanism is more effective to make the wandering steps in-phase and that the second mechanism induces step wandering in a wider range of parameters.  相似文献   

20.
A para-sexiphenyl monolayer of near up-right standing molecules (nominal thickness of 30 Å) is investigated in-situ by X-ray diffraction using synchrotron radiation and ex-situ by atomic force microscopy. A terrace like morphology is observed, the step height between the terraces is approximately one molecular length. The monolayer terraces, larger than 20 μm in size, are extended along the [0 0 1] direction of the TiO2(1 1 0) substrate i.e. along the Ti-O rows of the reconstructed substrate surface. The structure of the monolayer and its epitaxial relationship to the substrate is determined by grazing incidence X-ray diffraction. Extremely sharp diffraction peaks reveal high crystalline order within the monolayer, which was found to have the bulk structure of sexiphenyl. The monolayer terraces are epitaxially oriented with the (0 0 1) plane parallel to the substrate surface (out-of-plane order). Four epitaxial relationships are observed. This in-plane alignment is determined by the arrangement of the terminal phenyl rings of the sexiphenyl molecules parallel to the oxygen rows of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号