首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
在HL-2A 装置上优化和发展了偏滤器靶板上的红外测温系统,并利用该系统分析了高约束模放电期间边缘局域模的热沉积分布特性。在高约束模式放电期间,超声分子束注入使边缘局域模所引起的偏滤器靶板上瞬间热通量峰值下降了~60%,并伴随着边缘局域模爆发频率增加了2~3 倍,而等离子体储能仅下降了~8%。分析结果表明,大幅度的丝状结构在超声分子束注入之后得到了有效抑制,沉积到偏滤器靶板上的瞬间热通量峰值也随之下降。此外,在超声分子束注入之后偏滤器室内的热辐射损失大幅度增加,从而耗散了热输运所携带的部分能量,进一步分散了沉积到偏滤器靶板上的能量,有效地保护了偏滤器靶板。  相似文献   

2.
在HL-2A 装置上优化和发展了偏滤器靶板上的红外测温系统,并利用该系统分析了高约束模放电期间边缘局域模的热沉积分布特性。在高约束模式放电期间,超声分子束注入使边缘局域模所引起的偏滤器靶板上瞬间热通量峰值下降了~60%,并伴随着边缘局域模爆发频率增加了2~3 倍,而等离子体储能仅下降了~8%。分析结果表明,大幅度的丝状结构在超声分子束注入之后得到了有效抑制,沉积到偏滤器靶板上的瞬间热通量峰值也随之下降。此外,在超声分子束注入之后偏滤器室内的热辐射损失大幅度增加,从而耗散了热输运所携带的部分能量,进一步分散了沉积到偏滤器靶板上的能量,有效地保护了偏滤器靶板。  相似文献   

3.
钨材料在高瞬时热流作用下的熔化、流动是国际热核聚变实验堆面壁材料最突出的问题.本文将热传导方程与Navier-Stokes方程结合,建立了二维流体动力学模型,研究在边界局域模(ELM)强热流轰击下,钨熔化层在表面张力、压强梯度力、磁场力等作用下的流动,以及偏滤器靶板的侵蚀和形貌演化.结果表明,在ELM过程中,熔化层中的液体不断地向边缘区域流动,在打击点区域形成一个熔池,在熔化层的边缘区域形成类似山峰结构的凸起,加重了钨偏滤器靶板的侵蚀.在空间分布为高斯形状入射能流的作用下,钨熔化层两侧的山峰结构是对称的;当能流密度小于3000 MW·m~(-2)时,表面张力对熔化层的流动起主要作用.本文在模型的数值求解中,采用交错网格的方法进行离散,克服了液体表面追踪的算法难点,保证了钨偏滤器靶板侵蚀程度计算的准确性.  相似文献   

4.
为提高偏滤器的抗中子辐照能力,兼顾高热承载能力和聚变堆经济性的需要,提出了基于熔盐冷却(MSC)的偏滤器靶板结构设计。它采用FLiNaK作为冷却剂,钨镧合金为热沉材料,钨为第一壁材料。通过数值计算评估了靶板的热负荷承载能力,并完成了偏滤器冷却剂回路设计,优化了偏滤器各模块之间的流量分配。此MSC偏滤器靶板设计可以有效去除10~15MW·m-2热负荷,为适应未来聚变堆偏滤器靶板发展的需要提供了一种设计解决方案。  相似文献   

5.
孙振月  桑超峰  胡万鹏  王德真 《物理学报》2014,63(14):145204-145204
偏滤器是托卡马克中与等离子体直接接触的部件,为了保证装置的寿命,需要尽可能地减小等离子体对偏滤器靶板的侵蚀.本文用粒子模拟的方法研究了不同等离子体温度情况下碳和铍两种杂质离子对钨偏滤器侵蚀速率的影响.模拟首先得到稳定的鞘层结构、入射到靶板的离子流和能流密度,并通过统计获得了入射离子的能量和角度分布,最终根据这些物理参量,采用经验公式计算出钨靶板的侵蚀速率.研究表明,在等离子体温度不太高的情况下,钨靶板的热侵蚀几乎不起作用,而由于杂质离子对钨的物理溅射阈值较低,并且会通过鞘层加速获得能量,因此其对钨壁材料的物理溅射是导致靶板侵蚀的主要原因,另外靶板材料的侵蚀速率随着等离子体温度升高以及杂质含量增大而急剧增大.  相似文献   

6.
为提高偏滤器的抗中子辐照能力,兼顾高热承载能力和聚变堆经济性的需要,提出了基于熔盐冷却(MSC)的偏滤器靶板结构设计。它采用FLiNaK作为冷却剂,钨镧合金为热沉材料,钨为第一壁材料。通过数值计算评估了靶板的热负荷承载能力,并完成了偏滤器冷却剂回路设计,优化了偏滤器各模块之间的流量分配。此MSC偏滤器靶板设计可以有效去除10~15MW•m-2热负荷,为适应未来聚变堆偏滤器靶板发展的需要提供了一种设计解决方案。  相似文献   

7.
为提高EAST 偏滤器的抗热载和排热能力,将偏滤器第一壁的材料由原来的石墨改为钨,在结构上,靶板采用了类ITER 的单块结构,支撑和冷却采用一体化的盒式结构。确定了EAST 钨偏滤器的冷却结构后,通过水管的流固耦合传热模型,分析了外靶板在紊流冷却方式下的散热情况。同时计算了在水冷系统失效的情况下,偏滤器外靶板的危险区域在3、5、8、10MW·m-2 热流密度下的瞬态温度分布情况。结果表明,水流速度在4m·s-1 时, 水管可以承受峰值功率10MW·m-2 的热流密度,能够很好地满足EAST 装置运行的排热要求。  相似文献   

8.
采用SOLPS程序模拟预测HL-2M装置常规和雪花减偏滤器靶板上的热通量。当流入边缘等离子体区域的热功率约为10MW时,利用CFX/ANSYS软件分析这两类偏滤器各结构、冷却水温度分布及形变和热应力分布情况。结果表明:等离子体总功率相同,雪花减偏滤器靶板上的最高温度比常规偏滤器低169℃;雪花减偏滤器结构所承受的最大热应力和形变比常规偏滤器低约3/7。不改变热负载剖面分布,按一定比例提升热流密度或延长放电时间,雪花减偏滤器体现出比常规偏滤器靶板温升低、冷却水温均衡等优点。因此,雪花减偏滤器能处理更多流进偏滤器区域的热能,有效地降低偏滤器工程设计要求。  相似文献   

9.
利用SOLPS5.0模拟研究东方超环托卡马克(EAST)高约束模式时的刮削层等离子体. 在高约束模式放电实验参数(第36291炮)的限制下,通过调整上游区径向反常输运系数来实现高约束模式模拟,在上游电子密度和温度与实验符合的条件下能够很好地进行下游区模拟. 在实现高约束模拟的基础上又分别研究了漂移项对偏滤器靶板能流不对称性的影响和上游能流衰减宽度对靶板能流密度峰值的影响. 通过模拟发现,漂移是导致EAST放电内外靶板不对称性的主要原因,增大上游能流衰减宽度可以明显降低入射到靶板的峰值热流,并且偏滤器区辐射以及与中性粒子的相互作用减小了能流的衰减宽度对达到靶板能流的影响. 关键词: 托卡马克 高约束模式 SOLPS5.0 漂移  相似文献   

10.
为实现EAST装置超400s长脉冲高约束模、10MW加热功率下的稳态运行,需对现有的下碳偏滤器进行升级改造,拟采用钨串结极水冷却系统,热通量控制在水冷钨铜第一壁材料允许的稳态的10MW·m-2。在对下钨偏滤器的冷却结极传热性能进行数值模拟仿真研究的基础上,研究了多种以钨串单元为基础的冷却结极,提出了一种新型下钨偏滤器水冷结极设计,幵建立了满足传热要求的EAST装置新型下钨偏滤器单元结构模型。  相似文献   

11.
12.
Based on the surface temperature measured by the infrared camera on the experimental advanced superconducting tokamak(EAST), the heat fluxes on the lower outer divertor target plate during H-mode with the lower-hybrid wave current drive(LHCD) only and with the LHCD combined with the neutral beam injection(NBI) are calculated by the DFLUX code and compared. The analyzed discharges are lower single null divertor configuration discharges. In the case with the LHCD only(I_p~400 kA, P_(LHCD)~2 MW), ELM-free appears after L-H transition with the peak heat flux on the lower outer target plate less than 1 MW/m2. However, there is no ELMfree appearing after the L-H transition in the case with the LHCD+NBI(I_P~300 kA, P_(LHCD)+P_(NBI)~2 MW).The results show that the peak heat fluxes on the lower outer target plate in the LHCD+NBI H-mode cases are larger than those in the LHCD H-mode under the similar auxiliary heating power. This is because the heat flux profiles of the lower outer target plate as a function of plate location in ELMing with the LHCD+NBI are narrower than those with the LHCD only. The results are consistent with the results in terms of the scrape-off layer width observed in the EAST.  相似文献   

13.
In order to improve the anti-thermal load and heat dissipation performance of the divertor of EAST, its first wall material is changed to tungsten from graphite. In the structure, outer target adopts the ITER-like monoblock, bracing and cooling structure adopts incorporate cassette. After establishing the cooling structure of EAST tungsten divertor, the flows-solid coupling heat conduction model of water-pipes is used to analyze the heat dissipation situation of outside target in the form of turbulent flow. While the cooling system comes to failure, a series of heat flux value 3MW·m-2, 5MW·m-2, 8MW·m-2, 10MW·m-2 are applied in the hazardous area to analyze transient conditions and real temperature distribution. The results shows that if the water flows at 4m·s-1, the cooling pipes can withstand the heat flux with peak power in 10MW·m-2. It can well meet the needs in heat dissipation of EAST experiment.  相似文献   

14.
To study the evolution and distribution of the transient particle and heat fluxes during the edge-localized modes(ELMs) burst on the experimental advanced superconducting tokamak(EAST), the BOUT++six-field two-fluid model with sheath boundary conditions(SBCs) and magnetic flutter terms in the parallel thermal conduction is used to simulate the evolution of the profiles and growing process of the fluxes at divertor targets. Although SBCs hardly play a role in the linear phase, in the nonlinear phase both SBCs and magnetic flutter can change the dominant toroidal mode. SBCs are able to broaden the frequency distribution of the turbulence. The magnetic flutter increases the ELM size from 2.8% to 8.4%, and it doubles the amplitudes of the radial heat and particle transport coefficients at outer midplane(OMP), at around 1.0 m~2 s~(-1). It is then able to increase the particle and heat flux at the divertor targets and to broaden the radial distribution of the parallel heat flux towards the targets.  相似文献   

15.
To investigate the radiative divertor behavior and physics for the scenario of impurity seeded plasma in ITER, the radiative divertor experiments with argon(Ar) seeding under ITER-like tungsten divertor condition were carried out during recent EAST campaigns. The experimental results reveal the high efficiency of reducing heat load and particle flux onto the divertor targets owing to increased radiation by Ar seeding. We achieve detached plasmas in these experiments. The inner–outer divertor asymmetry reduces after Ar seeding. Impurities, such as Ar, C, Li, and W, exist in the entire space of the vacuum chamber during EAST operations, and play important roles in power exhausting and accelerating the plasma detachment process. It is remarkable that the contamination of the core plasma is observed using Ar seeding owing to the sputtering of plasma facing components(PFCs), particularly when Ar impurity is injected from the upper tungsten divertor.  相似文献   

16.
The H-mode discharges with high edge pressure gradients are expected for the economic feasibility of future fusion reactors. However, the high edge pressure gradients easily produce ELM instability , which generally can expel large, heat and particle loading to the divertor targets. These ELMs limit the core plasma performance and reduce the lifetime of divertor target plates. The transports of heat and particles outward across plasma boundary are useful to control density and impurity profiles for achieving steady state, high performance plasmas. Consequently, any technique to eliminate or mitigate large fast ELM impulses must replace the transient heat and particle transports with another slow process. Such a technique is high priority for a burning plasma device such as ITER.  相似文献   

17.
采用一维流体模型研究了含有杂质离子的等离子体与器壁材料相互作用给边界等离子体参量带来的影响.通过数值模拟,研究了分别选用碳和钨作为器壁材料时,器壁温度不同情形下热发射产生的电子对等离子体器壁电势、电场强度、热发射电子流以及沉积器壁离子动能流的影响.研究结果发现,当面向等离子体材料表面温度升高时,器壁电势和热发射产生的电流将增加,器壁电场强度和离子沉积器壁动能流则会减小,并且钨作为器壁材料要比碳作为器壁材料对于等离子体边界参量影响更明显.此外,研究了钨作为器壁材料时,碳杂质离子(浓度和电荷数)对等离子体器壁参量的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号