首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
煤化学链燃烧是一种基于CO_2零排放的新型燃烧方式。对铁矿石加以水泥/CaO修饰,在串行流化床上进行煤化学链燃烧试验,考察了修饰后的载氧体对煤转化特性及含N气体排放的影响。结果表明:相比于铁矿石载氧体工况,采用修饰铁矿石能够促进煤及煤气化产物在燃料反应器中的转化,从而提高CO_2捕集效率并降低额外耗氧率;采用修饰铁矿石减弱了燃料反应器中的还原性气氛,燃料反应器中的NO析出增加,而空气反应器中的NO析出减少。  相似文献   

2.
CO_2捕集是目前降低电厂CO_2排放最直接有效的方法之一,但能耗过高成为限制其发展的最大障碍,同时水耗的增加也对现有电厂的集成带来了挑战,本文从CO_2捕集系统与电厂系统的集成角度出发,建立了集成系统的能耗与水耗模型,结合典型300 MW亚临界燃煤发电机组参数,分析了CO_2捕集对电厂的影响,考察了CO_2捕集系统的运行参数对集成系统能耗与水耗的变化关系。结果表明,集成CO_2捕集后电厂发电效率降低了近10个百分点,冷却循环水用量与总水耗增加了近25%,单位发电量冷却循环水量与水耗增加了70%以上,同时系统能耗与水耗随CO_2捕集参数的变化而呈现不同的变化趋势。  相似文献   

3.
本文提出了一种CO_2捕集的新方法,利用双吸收升温型热泵提升汽轮机末级蒸汽的品位,使之与CO_2再生温度相互匹配后用于富液的解析,同时回收锅炉排烟热量,预热进入热泵的循环水,进一步降低CO_2捕集能耗。本文利用Aspen Plus 11.0对流程进行模拟,并对关键过程的结果进行了实验验证。研究表明,随着CO_2捕集率逐渐增加,机组发电效率增幅呈现先增后减的趋势:对于350 MW的机组,当捕集率为53.65%时,新方案效率增幅达到最大,相对常规捕集方案效率能够提升2.06个百分点;当CO_2捕集率为90%时,新方案CO_2捕集能耗下降10.5%,效率提升幅度为1.25个百分点;此方法实现了热能品位的对口利用,降低了CO_2再生过程的不可逆损失,为电厂降低CO_2捕集能耗提供了一种新思路。  相似文献   

4.
针对高温太阳能与天然气热化学互补分布式能源系统存在聚光比高、互补反应温度高、变工况性能不稳定的技术瓶颈,本文探索了一种能实现主动调控的中温太阳能与天然气互补的化学链重整冷热电联产系统。利用约500℃太阳热能驱动天然气基-氧化镍化学链重整,生成合成气太阳能燃料,通过燃气轮机冷热电联产系统,实现中温太阳能与天然气综合梯级利用.研究结果表明:在设计点工况条件下,系统的总能效率可达到80.9%,太阳能集热面积节约率达到53.2%,太阳能净发电效率可达27.3%.分析了关键参数如NiO和甲烷摩尔比(Ni/C)和太阳辐照强度(DNI)对系统热力学性能的影响。  相似文献   

5.
化学链燃烧是一个基于(近)零排放理念的先进能源利用技术。针对以NiO/NiAl_2O_4为氧载体的煤直接化学链燃烧系统,本文利用Aspen Plus软件进行了详细的模拟计算和热力学分析,研究了主要运行参数对系统性能的影响,得到了系统优化的运行工况,即燃料反应器的温度和压力分别为816.41℃和0.1 MPa,空气反应器的温度和压力分别为1200℃和0.1 MPa,氧载体煤北为14.0,空气煤北为7.8;并北较和评价了化学链燃煤系统和常规空气燃煤系统,发现化学链燃煤系统在热效率、(?)效率、碳捕捉率、NO_x和CO排放量等方面有优势,但SO_x排放量与常规燃煤系统相近。  相似文献   

6.
基于品位匹配和多能源综合梯级利用的原则,本文提出了低CO2排放的太阳能与化石能源互补发电系统LESOLCC,并对其进行了热力经济性能分析。所提系统以甲醇为燃料,中低温太阳能首先提供甲醇重整反应的反应热,从而转化为富氢合成气的化学能,实现品位提升;其次通过燃烧前对CO2的捕集,实现燃料的清洁燃烧,最终在高效联合循环中实现其热功转换。结果表明:基本工况下,系统当量效率达到55.1%,比投资为833$/kW,发电成本为0.124$/kWh,回收期17年;与相同化石燃料输入及CO2捕集水平的尾气捕集CO2的常规燃气-蒸汽联合循环(CC-Post)相比,发电成本下降了10.1%,充分显示其优越性。  相似文献   

7.
本文提出了一种新颖的甲醇重整–化学链发电制氢联产系统。该系统利用化学链燃烧氧化反应的显热给甲醇重整制氢部分提供反应热,充分利用了甲醇重整制氢的驰放气,同时实现了Fe_2O_3高温热的合理利用,使新系统内部能量品位的匹配变得更加合理。重整反应部分温度为250℃左右时,该新型联产系统的效率达到了61.8%,展现出了良好的热力学性能。本文对该系统进行了分析,并以常规制氢和化学链燃烧耦合发电系统为参照进行了对比,研究了其性能。新系统的效率较高,同时实现了CO_2的无能耗分离。  相似文献   

8.
钙基吸收剂循环煅烧/碳酸化法(CCRs)是捕集燃煤电厂烟气中CO_2的一种潜在技术。利用双流化床反应器实现连续高效捕集烟气中的CO_2是此技术应用到实际的关键。本文利用天然白云石,采用双鼓泡流化床反应器,连续捕集烟气中的CO_2。试验结果表明,所采用的双流化床反应器可以实现两个反应器之间物料连续稳定地交换,并长时间连续高效捕集烟气中的CO_2,捕集效率超过90%。  相似文献   

9.
提出一种新颖的基于化学链的氢氧联合动力循环系统,该系统利用透平余热提供化学链中天然气和Fe3O4反应热,将余热转换为高品位化学能。系统综合了化学链零能耗分离CO2和氢氧联合循环高效率的优点。与化学链燃烧联合循环相比,该循环取消了余热锅炉和底循环,系统内能量品位匹配更加合理。根据图像分析方法,阐明了化学链氢氧联合循环中损...  相似文献   

10.
单个流体包裹体同位素在研究岩矿古流体成因、矿床、油气和大地构造演化动力学等多个领域具有十分重要的意义,激光拉曼光谱是一项可以分析单个流体包裹体同位素的有效方法。本文提出应用显微激光拉曼光谱法来计算CO_2气体碳同位素值δ~(13)C。利用自行设计的装置将~(12)CO_2和~(13)CO_2按比例分别与N2混合,对混合气体样品进行显微激光拉曼测试分析后确定~(12)CO_2和~(13)CO_2的拉曼参数,这为用激光拉曼分析碳同位素值δ~(13)C奠定了理论基础。通过对不同比例的~(12)CO_2/~(13)CO_2人工合成CO_2包裹体样品和胜利油田CO_2天然气藏样品进行激光拉曼光谱分析,发现CO_2气体碳同位素摩尔分数比N_(13)/N_(12)与拉曼参数之间存在数学关系式,由此建立了根据碳同位素计算公式δ~(13)C=[(C_(13)/C_(12))_(样品)/(C_(13)/C_(12))_(标准)-1]×1 000‰,用激光拉曼分析获得的CO_2气体有关激光拉曼参数来计算δ~(13)C值的方法。按照该方法,应用显微激光拉曼光谱对胜利油田CO_2天然气藏样品分析计算其δ~(13)C值为-5.318‰,与用质谱仪分析测出的δ~(13)C值(-5.6‰)比较,其相对误差较小(≈5%),可以初步建立起应用显微激光拉曼光谱测定CO_2气体碳同位素值δ~(13)C的定量方法。  相似文献   

11.
提出一种新型发电系统,通过煤和天然气的互补利用来减少能量转化过程的不可逆损失。煤气化炉采用空气和水蒸气做氧化剂,碳转化率约为60%,未转化部分形成半焦,半焦燃烧释放的热量驱动天然气重整反应,制取合成气。煤部分气化所得气化煤气和半焦燃烧驱动天然气重整所得合成气混合,作为联合循环的燃料。结果显示,新系统的热效率为51.5%,效率为50.3%,天然气折合发电效率为61%。新系统为高效合理利用煤和天然气提供了一种新途径。  相似文献   

12.
制约碳捕集技术实用化的重要瓶颈在于捕集能耗过高,而热力学是能源系统效能分析的有力工具。基于将热力学研究方法应用到碳捕集技术效能分析的思想,本文以变温吸附碳捕集为例,按照"物性-过程-冷热源-循环"顺序,完成热力学碳泵循环(TCPC)的构建,进而考察循环参数对总能耗和第二定律效率的影响。结果显示;循环能耗主要受循环温度、吸附剂和吸附相等影响,吸附相显热大约占循环总能耗的2%;第二定律效率区间为13.91%~21.21%,具有较高节能潜力;TCPC作为一种基于热力学思想的"量化规尺",可对碳捕集技术展开效能分析,进而对影响循环总能耗的主要因素进行归纳,并可通过第二定律效率对技术成熟度进行判断,有效挖掘碳捕集技术的节能潜力。  相似文献   

13.
针对火电厂燃烧后CO_2捕集过程的强非线性及大惯性等动态特性,研究准确性高的建模方法是系统优化设计的前提,本文从控制角度研究CO_2捕集系统的非线性动态辨识建模方法。首先介绍火电厂CO_2捕集系统工作原理,将系统抽象为二输入二输出的受控对象;然后采用基于最小二乘支持向量机的Hammerstein模型(LSSVM-Hammerstein)辨识方法,将CO_2捕集系统表示为静态LSSVM模型与动态线性模型的组合。辨识结果表明该模型有很高的辨识精度和泛化能力,能精确描述CO_2捕集系统非线性动态特性,为后续研究先进控制算法提供仿真平台和设计依据。  相似文献   

14.
为了缓解载氧体颗粒表面的烧结,本文提出在化学链燃烧过程中,对空气反应器进行分级送风。以Fe_2O_3为载氧体,在10 kW级串行流化床实验装置上进行煤化学链燃烧分级送风实验,探讨了一二次风的配比对两个反应器气体产物组成以及煤中碳的捕集效率的影响,利用SEM和BET对反应前后载氧体的物化性能进了分析。结果表明,分级送风方法能够有效地缓解载氧体的烧结程度,有助于载氧体在长时间使用过程中反应性能的维持。  相似文献   

15.
固体氧化物燃料电池是将化学能转化成电能的全固态能量转换装置,被认为是极具前景的绿色发电系统。本研究提出了结合碳捕集的固体氧化物燃料电池-超临界二氧化碳布雷顿循环集成系统,通过阳极尾气富氧燃烧实现低能耗碳捕集,并利用s CO2再压缩布雷顿循环回收燃烧室余热提高系统效率。模拟结果显示,该集成系统在设计工况下的净发电效率为59.74%,二氧化碳捕集量为134.50 kg/h。此外,关键工作参数对系统性能的影响分析结果表明,合理的阳极尾气再循环比、燃料利用率和燃料流量是确保系统安全高效运行的必要前提。  相似文献   

16.
本文开拓性地提出了一种新型多种化石能源输入(煤和天然气)、多种产品输出(电力和化工产品)的多功能能源系统。该系统将天然气/水蒸气重整过程和煤的燃烧过程有机整合,用煤燃烧替代了传统重整过程清洁的燃料天然气和弛放气燃烧,实现了煤和天然气的综合互补利用;将甲醇生产系统与发电系统有机整合,实现了化工系统弛放气的梯级利用同时,对甲醇生产系统余热进行了更加有效的利用。研究表明生产相同量的甲醇和电,多功能系统比参比系统少消耗 20%的天然气。本文工作为煤和天然气综合高效利用提供了新途径.  相似文献   

17.
化学链燃烧是一种具有CO_2内分离的新型燃烧技术。基于天然铁矿石载氧体在1 kWth的串行流化床上进行了污泥和准东煤化学链混合燃烧实验。探究燃料反应器温度对碳转化率和反应器口体积分数的影响。在批次流化床上进行了固体燃料气化和热解实验。实验结果表明反应器温度由800到930℃,反应器出口的CO_2体积分数上升,CO和CH4降低,碳转化率升高。在整个温度范围内,相比于污泥,混合燃料对应的CO_2体积分数,但碳转化率低。在930℃时,混合燃料的碳转化率可以达到90%左右。准东煤中钠含量较高,但在连续运行过程中无烧结和团聚等问题出现,这主要归结于燃料混合导致的钠含量的降低以及高熔点钠化合物的生成。  相似文献   

18.
本文根据生物质能源具有的自身特点,提出一个适合生物质能源利用的新型多联产系统.在原有天然气基甲醇生产系统中增加生物质气化子系统,充分利用天然气-水蒸气重整与生物质气化制取合成气中碳氢有效成分互补的特点,通过合理配气满足最佳的甲醇合成要求,因此屏蔽掉了变换,补碳,脱碳等分产必需的工艺过程,同时借助动力系统实现未反应气的合理利用,在满足较高的甲醇产率前提下降低了化工产品能耗,动力系统借助化工过程克服燃料燃烧过程品位损失过大的难题,是组分对口分级转化能量梯级利用的本质体现.针对不同天然气生物质输入比情况下合成气一次性通过,以及最佳输入比情况下未反应气适度循环两种方案,本文分别进行了深入分析,具有8%~14%的节能潜力.为生物质能的高效应用以及缓解能源危机提供了一条有效的途径.  相似文献   

19.
本文提出一种新颖的甲醇化学链燃烧动力循环系统.该系统利用空气压缩的间冷热提供甲醇和Fe2O3反应热,将间冷的低温热转换为高品位化学能;同时得到预冷的空气吸收燃烧产物Fe2O3的显热,降低了还原反应的温度.与常规化学链循环相比,该循环利用间冷的热量代替高温Fe2O3的显热提供还原反应的反应热,系统内能量品位匹配更加合理.根据图像(火用)分析方法,阐明了甲醇化学链燃烧过程(火用)损失减少和间冷热品位提升的机理.本文对新循环进行了分析,并以常规化学链循环为参照,研究了其性能.新循环的效率较高,同时可以实现CO2无能耗的分离.  相似文献   

20.
本文在深入分析国内已建电站CO_2捕获性能及能耗分布特点的基础上,就国内600 MW燃煤碳捕获电站普遍存在的能耗高等问题提出了系统集成优化方案.该方案通过汽水系统与脱碳流程的有效集成,实现了余压和中低温热的有效利用,同时降低了化学吸收法脱碳流程对汽水系统安全性的冲击.根据本文的分析,最终可实现现役600 MW电厂加入CO_2捕获系统后,全厂效率提高4个百分点左右.本文提出的思路和方法,为CO_2大规模减排,脱碳电站效率提高提供了一些新的思路和学术见解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号