首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
磁共振成像(MRI)的磁体设计首先是确保中心成像区的场值和均匀性, 二是尽可能减少场值耗散的距离即漏磁5Gs 线. 基于此本文提出了一种线性与非线性规划联合优化的方法. 首先将导体作为基本单元, 在预布置线圈的空间范围内构建二维连续导体网格. 通过线性规划搜索满足磁场约束条件的网格电流分布图. 再将存在电流的网格离散为一个个矩形线圈区域, 在保证场值均匀性、 杂散场5 Gs 线范围以及线圈位置间隔、 导体超导线安全裕度的前提下利用非线性规划, 具体确定各个线圈的轴向和径向位置、 线圈内导体层数和各层匝数以及通电流大小等. 采用这种联合优化方法, 不仅节省优化时间, 还可以自行设计线圈形状有利于工程实现. 文中由此方法给出了14 T MRI 磁体的一种设计方案, 依靠4 组线圈使得45 cm 中心球形成像内不均匀度降低到5 ppm, 而高场耗散的5 Gs 线通过磁体自屏蔽减小到15 m 以内. 满足了设计的要求.  相似文献   

2.
This paper reports on design and construction of a double coil high-homogeneity ensuring Nuclear Magnetic Resonance Probe for off-resonance relaxation time measurements. NMR off-resonance experiments pose unique technical problems. Long irradiation can overheat the sample, dephase the spins because of B(1) field inhomogeneity and degrade the signal received by requiring the receiver bandwidth to be broader than that needed for normal experiment. The probe proposed solves these problems by introducing a separate off-resonance irradiation coil which is larger than the receiver coil and is wound up on the dewar tube that separates it from the receiver coil thus also thermally protects the sample from overheating. Large size of the irradiation coil also improves the field homogeneity because as a ratio of the sample diameter to the magnet (coil) diameter increases, the field inhomogeneity also increases (Blümich et al., 2008) [1]. The small receiver coil offers maximization of the filling factor and a high signal to the noise ratio.  相似文献   

3.
Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-microL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.  相似文献   

4.
Geometric distortion caused by B0 inhomogeneity is one of the most important problems for diffusion-weighted images (DWI) using single-shot, echo planar imaging (SS-EPI). In this study, large-deformation, diffeomorphic metric mapping (LDDMM) algorithm has been tested for the correction of geometric distortion in diffusion tensor images (DTI). Based on data from nine normal subjects, the amount of distortion caused by B0 susceptibility in the 3-T magnet was characterized. The distortion quality was validated by manually placing landmarks in the target and DTI images before and after distortion correction. The distortion was found to be up to 15 mm in the population-averaged map and could be more than 20 mm in individual images. Both qualitative demonstration and quantitative statistical results suggest that the highly elastic geometric distortion caused by spatial inhomogeneity of the B0 field in DTI using SS-EPI can be effectively corrected by LDDMM. This postprocessing method is especially useful for correcting existent DTI data without phase maps.  相似文献   

5.
我国于2019年启动了国家大科学装置聚变堆主机关键系统综合研究设施(CRAFT)的建设,环向场(Toroidal Field, TF)线圈是聚变堆主机关键系统综合研究设施的重要组成部分.TF线圈绝缘制造采用真空压力浸渍工艺实现,因TF线圈体量巨大,为使线圈绝缘固化时温度均匀,减少绝缘树脂固化热应力,拟采用导体电流加热的方式进行加热.TF中场线圈有三个内部接头,因此需要同时知道导体和内部接头电阻与温度之间的关系,以防内部接头局部过热,导致绝缘固化失败.本文将中场内部接头样件加热到线圈绝缘工艺温度,用直流四线法测量导体和内部接头在不同温度下的电阻,得到在303~443 K温度区间内导体和内部接头电阻-温度关系式.发现相同温度下,导体电阻大于内部接头电阻,同时分析了内部接头铜套以及铬层对电阻的影响.并根据测得的电阻-温度关系式,可以得到在不同温度下超导缆及内部接头产生焦耳热的能力,从而为超导线圈绝缘固化温度控制提供重要的参考依据.  相似文献   

6.
应用于"μ介子离子化冷却实验装置(MICE)"的超导耦合磁体系统是MICE中的三大关键设备之一。耦合磁体线圈内径为1 500mm,长度为285mm,厚度为110.4mm,采用方形截面1.65×1.00mm2的NbTi复合超导线。每层导线之间为环氧和绝缘玻璃纤维布,每匝导线之间为环氧,线圈具有复杂的正交各向异性性质。根据线圈横截面细观结构的周期性,选出单根导线与周围的绝缘材料为代表性体积元(Representative Volume Element,RVE),基于能量等效原理得出线圈等效弹性模量的含义,然后根据细观力学有限元法,采用有限元软件计算了不同边界条件下细观结构代表性体积元的力学响应,得出了线圈平面径向和环向等效弹性模量,结果已经作为基础数据运用在MICE超导耦合磁体的力学计算中。  相似文献   

7.
Deterioration of radiofrequency (RF) inhomogeneity with increasing static magnetic field in magnetic resonance imaging (MRI) is one of the fundamental challenges preventing their clinical rendition and posing safety hazards. Variation in RF coil designs could help redistribute RF energy absorption over the imaged object. This work is intended to determine experimentally the difference in RF heating produced within a human head phantom by in situ measurement of RF inhomogeneity as a function of coil design utilized at 8 T. The heating patterns of 1/4 wavelength (long) and 1/8 wavelength 11-cm (short) transverse electromagnetic (TEM) coils loaded with a homogeneous human head phantom at 340 MHz were evaluated. In addition, different transmit/receive (T/R) configurations were used in search for the possibility of "hot-spot" formation. Fluoroptic thermometry was used to measure temperatures in multiple positions in a head phantom made of ground turkey breast for RF powers corresponding to a specific absorption rate (SAR) of 4.0 W/kg for 10 min. Numerical simulations were performed to study the general RF power deposition patterns in phantoms at 340 MHz including the effects of field polarization. The temperature increases varied from 0 to 0.8 degrees C for the long RF coil, while the short RF coil produced a maximum temperature change of 0.5 degrees C. Similar to ultra high-field electromagnetic simulations, these measurements revealed low peripheral and high deep-tissue heating at 8 T. The findings indicated that the largest temperature changes for both cases were less than 1 degrees C. While these results showed an increase in localized heating due to RF pulses at 8 T, they highlight that RF inhomogeneity could be redistributed using different RF coil designs through which the hot spots could be made cooler.  相似文献   

8.
High spatial resolution NMR imaging techniques have been developed recently to measure the spatial inhomogeneity of a polymer coating film. However, the substrates of the polymer coatings for such experiments are generally required to be non-metallic, because metals can interact with static magnetic fields B(0) and RF fields B(1) giving rise to artifacts in NMR images. In this paper we present a systematic study on the effects of metallic substrates on 1D profiles obtained by high resolution NMR imaging. The off-resonance effect is discussed in detail in terms of the excitation profile of the RF pulses. We quantitatively show how the NMR signal intensities change with frequency offset at different RF pulse lengths. The complete NMR profiles were simulated using a Finite Element Analysis method by fully considering the inhomogeneities in both B(1) and B(0). The excellent agreement between the calculated and measured NMR profiles on both metallic and non-metallic substrates indicates that the experimental NMR profiles can be reproduced very well by numerical simulations. The metallic substrates can disturb the RF field of the coil by eddy current effect and therefore change the NMR profiles. To quantitatively interpret the NMR profile of a polymer layer on a metallic substrate, the profile has to be divided by the profile of a reference on the same metallic substrate located at the same distance from the coil.  相似文献   

9.
A suitably matched combination of unidirectional gradient pulses of the radio frequency amplitude B(1) and of the main magnetic field B(0) produces an unconventional type of spin echo, the nutation echo. The echo signal becomes volume selective if the gradients to be matched are inhomogeneously distributed in space. An example is a combination of a constant B(0) gradient and the inhomogeneous B(1) gradient of a surface coil. We suggest a method for localized NMR on this basis. Nutation echoes can also be used to map the spatial distribution of B(1) gradients of an arbitrary radio frequency coil geometry with the aid of a small probe sample. Copyright 2000 Academic Press.  相似文献   

10.
Unilateral magnetic resonance techniques, where magnet and radio frequency (RF) coil are placed on one side of the sample, can provide valuable information about a sample which otherwise cannot be accommodated in conventional high spectral resolution magnetic resonance systems. A unilateral magnetic resonance imaging approach utilizing the stray field from a disc magnet and a butterfly geometry RF coil is described. The coil excites spins in a volume centered around an arc through the sample. Translating the RF coil relative to the magnet and recording the signal at each translational location creates a projection of the signal in a tomographic slice through the sample. Rotating the RF coil relative to the sample and repeating the translation creates projections through the sample at different angles. Backprojecting this information yields an image. A proof of concept device operating on this principle at 12.4 MHz was constructed and characterized. Projections through three phantoms are presented with a 1.2-4 cm field of view, thickness of 102 microm, and at a distance of 3mm from the RF coil and 14 mm from the magnet. The edge spread function (ESF) was measured resulting in a 4mm full width at half maximum (FWHM) line spread function (LSF) estimation using a Gaussian model. An example of one reconstructed image is presented.  相似文献   

11.
A new technique is presented for generating myocardial tagging using the signal intensity minima of the transition zones between the bands of 0 degrees and 360 degrees rotations, induced by a tandem of two adiabatic delays alternating with nutations for tailored excitation (DANTE) inversion sequences. With this approach, the underlying matrix corresponds to magnetization that has experienced 0 degrees or 360 degrees rotations. The DANTE sequences were implemented from adiabatic parent pulses for insensitivity of the underlying matrix to B(1) inhomogeneity. The performance of the proposed tagging technique is demonstrated theoretically with computer simulations and experimentally on phantom and on the canine heart, using a surface coil for both RF transmission and signal reception. The simulations and the experimental data demonstrated uniform grid contrast and sharp tagging profiles over a twofold variation of the B(1) field magnitude.  相似文献   

12.
To characterize the severe static (B(0)) and radiofrequency (B(1)) magnetic field inhomogeneity in ultra-high field (> or =7 T) magnetic resonance imaging, gradient echo (GE) and spin echo (SE) images of in vivo and postmortem human brains were acquired. The B(0) and B(1) inhomogeneity were experimentally mapped and/or numerically simulated, and correlated with the image artifacts. Whereas B(0) inhomogeneity affects predominantly GE images near air/tissue interfaces, B(1) inhomogeneity affects SE images more severely and shows non-intuitive patterns. Mapping of the B(0) and B(1) inhomogeneity is important in characterizing image artifacts. This will help develop better B(0) and B(1) inhomogeneity correction methods.  相似文献   

13.
In solid-state proton-dipolar-decoupled19F MAS NMR spectroscopy,19F chemical-shift data need to be corrected for the Bloch–Siegert shift. Assigning the single sharp19F resonance of 2-fluoroadamantane to its proton-coupled19F shift of −174.4 ppm results in chemical-shift referencing that is independent of the amplitude of the proton-decoupling field. The Bloch–Siegert shift is also a useful tool to characterize the amplitude and homogeneity of the proton-decoupling field,H1H, and to monitor probe performance. Considerable inhomogeneity inH1Halong the long axis of the right-cylinder sample rotor was detected. In our commercial 7 mm H– F MAS probe, the proton field strength,[formula], decreases to 25% of the maximum value across the usable sample volume. Measurement of the Bloch–Siegert shift revealed that the proton-decoupling field strength decreases during the first few scans of an acquisition. Reductions in the proton field strengths can exceed 10%, and they are explained by the heating of the RF coil circuitry which is caused by high-power proton decoupling. The extent of reduction in field amplitude is a function of the decoupling duty cycle. Losses in[formula]can be avoided by tuning the probe proton RF circuitry at the operating temperature of the probe, using the Bloch–Siegert shift as an optimization parameter.  相似文献   

14.
聚变堆主机关键系统综合研究设施(CRAFT)是为了探索与建设中国聚变工程试验堆(CFETR)关键技术和原型系统的大科学装置.环向场(Toroidal Field, TF)线圈是CRAFT系统的重要组成部分,旨在研制出用于CFETR环向场原型线圈.本文基于弹塑性力学理论,通过建立TF导体连续弯绕成形有限元分析模型,对TF导体弯曲成形过程进行力学仿真,获得了TF导体在成形过程中的应力、应变和成形力等力学参数,预测了TF线圈绕制过程导体截面变形、回弹、应力和应变情况,并采用TF导体开展了弯曲成形验证试验,为TF线圈的精密绕制和成形设备的工程设计提供了可靠的依据.  相似文献   

15.
A compact permanent magnet array with a remote homogeneous field   总被引:1,自引:0,他引:1  
We present the design and construction of a single sided magnet array generating a homogeneous field in a remote volume. The compact array measures 11.5 cm by 10 cm by 6 cm and weights approximately 5 kg. It produces a B(0) field with a 'sweet spot' at a point 1cm above its surface, where its first and second spatial derivatives are approximately zero. Unlike other sweet spot magnets of this general type, our array has B(0) oriented parallel to its surface. This allows an ordinary surface coil to be used for unilateral measurements, giving the potential for dramatic SNR improvement.  相似文献   

16.
Proper design of a birdcage coil plays a very important role in obtaining high-resolution small animal magnetic resonance imaging. The RF field homogeneity and the coil filling factor directly affect the signal-to-noise ratio (S/N) and therefore limit the resolution. It has been shown that a conductive end-cap placed on one side of the coil can improve the RF field inhomogeneity near this area. This also contributes to an increase in the S/N by reducing the length of the RF coil. While this is true near the end-cap, the distal half of the coil still suffers from poor homogeneity and S/N. Consequently, such a shortfall may hinder small animal whole body imaging. In order to improve the coil performance for a larger imaging volume, we designed a new small animal birdcage RF coil by adding a detachable second end-cap to the open end. The performance of single end and double end RF coils was compared experimentally. The results indicate that the double end-cap can provide superior uniformity along the long axis of the coil. Furthermore, if one wishes to obtain the same homogeneity within a given volume, a double end-cap would have less than half of the length of the single end-cap coil leading to a superior S/N performance.  相似文献   

17.
A temperature variable magnetic resonance imaging (MRI) system has been developed using a 1.0 T permanent magnet. A permanent magnet, gradient coils, radiofrequency coil, and shim coil were installed in a temperature variable thermostatic bath. First, the variation in the magnetic field inhomogeneity with temperature was measured. The inhomogeneity has a specific spatial symmetry, which scales linearly with temperature, and a single-channel shim coil was designed to compensate for the inhomogeneity. The inhomogeneity was drastically reduced by shimming over a wide range of temperature from −5 °C to 45 °C. MR images of an okra pod acquired at different temperatures demonstrated the high potential of the system for visualizing thermally sensitive properties.  相似文献   

18.
基于小型射频线圈的核磁共振检测探头在波谱分析和成像研究中具有广泛的应用,如化学位移波谱分析、磁共振成像和勘探测井等技术领域。但是,由于外加静磁场作用下,自旋体系发生塞曼能级分裂后,高低能态之间的核自旋数量之差很小,普遍存在检测信噪比很低的问题,而且初级磁共振接收信号的质量受所用探头线圈电气参数的影响较大。研究结果表明,在特定的被测样品和接收线圈占空比以及静磁场等条件不变的情况下,检测信噪比与单位电流产生的射频磁场成正比,而与线圈高频电阻的平方根成反比。在永磁0.39Tesla主磁场条件下,研究了趋肤效应影响下小型螺线管线圈几何参数的优化设计方法。理论仿真和实际的测量结果表明,几何参数为线径0.5 mm、直径5.5 mm的10匝微螺线管线圈,在16.9 MHz谐振频率上,相对信噪比取得一个极大值点,对应的Q值约为199.8,与阻抗分析仪测得结果有较好的吻合,验证了该核磁共振检测线圈设计新方法是合理的。本文提出的基于线圈电磁特性的高信噪比检测探头设计方法,可推广到目前的质子密度成像、岩心弛豫谱分析等应用中。  相似文献   

19.
The influence of the inhomogeneity of a magnetic field on measurements by the ballistical method using a cylindrical induction coil is calculated, keeping terms up to the fifth order in the linear dimensions of the coil. If the geometry of the coil is correctly chosen, the relative deviation due to the inhomogeneity is proportional to the fourth power of the linear dimensions and the fourth derivative of the component of the field in the direction of the axis of the winding. A numerical example for the field of a dipole is calculated.  相似文献   

20.
The excitation of axial radio-frequency (rf) magnetic induction by an axial rf current is observed in a conductor with circular magnetic anisotropy when a weak magnetizing field is applied. The conductor is an amorphous cobalt-based wire, which exhibits azimuthal magnetic anisotropy. It serves as the central conductor in a coaxial line. The axial rf magnetic induction produces an emf in an induction coil coaxial to the conductor. The induction coil is part of a matched receiving circuit. The power conversion coefficient is as high as tens of percent. The measurements demonstrate the high sensitivity of the conversion coefficient to an external field. The theory of ferromagnetic resonance faithfully describes the results of the observations. Zh. Tekh. Fiz. 69, 58–63 (March 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号