首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We quantify the amount of information exchanged between a system of two qubit pair and the environment. We find that there is a good chance for an Eavesdropper to distill information from the entangled qubits. This chance decreases for less entangled qubits. In particular, we considered two examples: The first is an entangled pure two qubit state and the second an entangled state from two cavities, with a depolarizing channel as an environment. Also the effect of decoherence due to the channel parameter is studied.  相似文献   

2.
We propose a scheme for the implementation of nonlocal quantum swap operation on two spatially separated entangled pairs and we show that the operation can swap two qubits of these entangled pairs.We discuss the resources of the entangled qubits and classical communication bits required for the optimal implementation of the nonlocal quantum swap operation.We also put forward a scheme for probabilistic implementation of nonlocal swap operation via a nonmaximally entangled quantum channel.The probability of a successful nonlocal swap operation is obtained by introducing a collective unitary transformation.  相似文献   

3.
Scalable quantum networks require the capability to create, store and distribute entanglement among distant nodes (atoms, trapped ions, charge and spin qubits built on quantum dots, etc.) by means of photonic channels. We show how the entanglement between qubits and electromagnetic field modes allows generation of entangled states of remotely located qubits. We present analytical calculations of linear entropy and the density matrix for the entangled qubits for the system described by the Jaynes-Cummings model. We also discuss the influence of decoherence. The presented scheme is able to drive an initially separable state of two qubits into an highly entangled state suitable for quantum information processing.  相似文献   

4.
《Physics letters. A》2020,384(26):126673
We study one-dimensional quantum walk with four internal degrees of freedom resulted from two entangled qubits. We will demonstrate that the entanglement between the qubits and its corresponding coin operator enable one to steer the walker's state from a classical to standard quantum-walk behavior, and a novel one. Additionally, we report on self-trapped behavior and perfect transfer with highest velocity for the walker. We also show that symmetry of probability density distribution, the most probable place to find the walker and evolution of the entropy are subject to initial entanglement between the qubits. In fact, we confirm that if the two qubits are separable (zero entanglement), entropy becomes minimum whereas its maximization happens if the two qubits are initially maximally entangled. We will make contrast between cases where the entangled qubits are affected by coin operator identically or else, and show considerably different deviation in walker's behavior and its properties.  相似文献   

5.
Transferring entangled states between matter qubits and microwave-field (or optical-field) qubits is of fundamental interest in quantum mechanics and necessary in hybrid quantum information processing and quantum communication. We here propose a way for transferring entangled states between superconducting qubits (matter qubits) and microwave-field qubits. This proposal is realized by a system consisting of multiple superconducting qutrits and microwave cavities. Here, „qutrit” refers to a three-level quantum system with the two lowest levels encoding a qubit while the third level acting as an auxiliary state. In contrast, the microwave-field qubits are encoded with coherent states of microwave cavities. Because the third energy level of each qutrit is not populated during the operation, decoherence from the higher energy levels is greatly suppressed. The entangled states can be deterministically transferred because measurement on the states is not needed. The operation time is independent of the number of superconducting qubits or microwave-field qubits. In addition, the architecture of the circuit system is quite simple because only a coupler qutrit and an auxiliary cavity are required. As an example, our numerical simulations show that high-fidelity transfer of entangled states from two superconducting qubits to two microwave-field qubits is feasible with present circuit QED technology. This proposal is quite general and can be extended to transfer entangled states between other matter qubits (e.g., atoms, quantum dots, and NV centers) and microwave- or optical-field qubits encoded with coherent states.  相似文献   

6.
The modified mapping method is further improved by the expanded expression of u(ξ) that contains the terms of the first-order derivative of function f(ξ). Some new exact solutions to the mBBM equation are determined by means of the method. We can obtain many new solutions in terms of the Jacobi elliptic functions of the equation.  相似文献   

7.
We propose a multiparty quantum cryptographic protocol. Unitary operators applied by Bob and Charlie, on their respective qubits of a tripartite entangled state encoding a classical symbol that can be decoded at Alice's end with the help of a decoding matrix. Eve's presence can be detected by the disturbance of the decoding matrix. Our protocol is secure against intercept resend attacks. Furthermore, it is eifficient and deterministic in the sense that two classical bits can be transferred per entangled pair of qubits. It is worth mentioning that in this protocol, the same symbol can be used for key distribution and Eve's detection that enhances the etfficiency of the protocol.  相似文献   

8.
We report the creation of an entangled multiphoton quantum superposition by quantum injection of entangled 2-photon states into a parity selective parametric amplifier. The information preserving property of the state transformation suggests for these macrostates the name of large qubits. They are ideal objects for investigating the emergence of the classical world in complex quantum systems and have relevant new applications in quantum information.  相似文献   

9.
Motivated by recent experimental studies on coherent dynamics transfer in three interacting atoms or electron spins [Phys. Rev. Lett 114(2015) 113002, Phys. Rev. Lett 120(2018) 243604], here we study entanglement entropy transfer in three interacting qubits. We analytically calculate time evolutions of wave function, density matrix and entanglement of the system. We find that initially entangled two qubits may alternatively transfer their entanglement entropy to other two qubit pairs. Thus dynamical evolution of three interacting qubits may produce a genuine three-partite entangled state through entanglement entropy transfers. In particular, different pairwise interactions of the three qubits endow symmetric and asymmetric evolutions of the entanglement transfer,characterized by the quantum mutual information and concurrence. Finally, we discuss an experimental proposal of three Rydberg atoms for testing the entanglement dynamics transfer of this kind.  相似文献   

10.
We propose a simple scheme to generate two-mode entangled coherent state in two separated cavities and realize the entanglement reciprocation between the superconducting charge qubits and continuous-variable system. By measuring the state of charge qubits, we find that the entanglement of two charge qubits, which are initially prepared in the maximally entangled state, can be transferred to the two-cavity field, and at this time the two-cavity field is in the entangled coherent state. We also find that the entanglement can be retrieved back to the two charge qubits after measuring the state of the two-cavity field.  相似文献   

11.
We propose a simple scheme to generate two-mode entangled coherent state in two separated cavities and realize the entanglement reciprocation between the superconducting charge qubits and continuous-variable system. By measuring the state of charge qubits, we find that the entanglement of two charge qubits, which are initially prepared in the maximally entangled state, can be transferred to the two-cavity field, and at this time the two-cavity field is in the entangled coherent state. We also find that the entanglement can be retrieved back to the two charge qubits after measuring the state of the two-cavity field.   相似文献   

12.
We study the time evolution of two two-state systems (two qubits) initially in the pure entangled states or the maximally entangled mixed states interacting with the individual environmental noise. It is shown that due to environment noise, all quantum entangled states are very fragile and become a classical mixed state in a short-time limit. But the environment can affect entanglement in very different ways. The type of decoherence process for certain entangled states belongs to amplitude damping, while the others belong to dephasing decoherenee.  相似文献   

13.
基于混合纠缠态的概率超密编码   总被引:1,自引:1,他引:0  
在理想的超密编码方案中,发送方凭借一个和接收方共享的最大纠缠纯态,可用传送一量子比特来实现传送两经典比特的信息.本文提出了一个凭借混合纠缠态的超密编码方案,并分析了该方案成功传送信息的概率上界.进一步讨论了该类超密编码的通信容量.  相似文献   

14.
We propose a controllable and scalable architecture for quantum information processing using a superconducting system network, which is composed of current-biased Josephson junctions (CBJJs) as tunable couplers between the two superconducting transmission line resonators (TLRs), each coupling to multiple superconducting qubits (SQs). We explicitly demonstrate that the entangled state, the phase gate, and the information transfer between any two selected SQs can be implemented, respectively. Lastly, numerical simulation shows that our scheme is robust against the decoherence of the system.  相似文献   

15.
We investigate the effects of classical driving fields on the dynamics of purity, spin squeezing, and genuine multipartite entanglement (based on the Peres-Horodecki criterion ) of three two-level atoms within three separated cavities prepared in coherent states in the presence of decoherence. The three qubits are initially entangled and driven by classical fields. We obtain an analytical solution of the present system using the superoperator method. We find that the genuine multipartite entanglement measured by an entanglement monotone based on the Peres-Horodecki criterion can stay zero for a finite time and revive partially later. This phenomenon is similar to the sudden death of entanglement of two qubits and can be controlled efficiently by the classical driving fields. The amount of purity, spin squeezing, and genuine multipartite entanglement decrease with the increase of mean photon number of cavity fields. Particularly, the purity and genuine multipartite entanglement could be simultaneously improved by the classical driving fields. In addition, there is steady state genuine multipartite entanglement which can also be adjusted by the classical driving fields.  相似文献   

16.
We theoretically investigate the generation of quantum correlations by using two distant qubits in free space or mediated by a plasmonic nanostructure. We report both entanglement of formation as well as quantum discord and classical correlations. We have found that for proper initial state of the two-qubit system and distance between the two qubits we can produce quantum correlations taking significant value for a relatively large time interval so that it can be useful in quantum information and computation processes.  相似文献   

17.
This paper proposes a method of generating multipartite entanglement through using d.c. superconducting quantum interference devices (SQUID) inside a standing wave cavity. In this scheme, the d.c. SQUID works in the charge region. It is shown that, a large number of important multipartite entangled states can be generated by a controllable interaction between a cavity field and qubits. It is even possible to produce entangled states involving different cavity modes based on the measurement of charge qubits states. After such superpositions states are created, the interaction can be switched off by the classical magnetic field through the SQUID, and there is no information transfer between the cavity field and the charge qubits.  相似文献   

18.
We propose a scheme for encoding logical qubits in a subspace protected against collective rotations around the propagation axis using the polarization and transverse spatial degrees of freedom of single photons. This encoding allows for quantum key distribution without the need of a shared reference frame. We present methods to generate entangled states of two logical qubits using present day down-conversion sources and linear optics, and show that the application of these entangled logical states to quantum information schemes allows for alignment-free tests of Bell's inequalities, quantum dense coding, and quantum teleportation.  相似文献   

19.
Quantum and classical correlations in quantum channels are investigated by means of an entangled pure state and a separable state which is closest to an entangled pure state. The coherent information and the separable information are used to estimate how much correlation is transmitted through a quantum channel. As the examples, the linear dissipative channel of qubits and the quantum erasure channel are considered.  相似文献   

20.
We present an explicit generalized protocol for probabilistic teleportation of an arbitrary N-qubit GHZ entangled state via only one non-maximally two-qubit entangled state. Without entanglement concentration, using standard Bell-state measurement and classical communication one cannot teleport the state with unit fidelity and unit probability. We show that by properly choosing the measurement basis it is possible to achieve unity fidelity transfer of the state. Compared with Gordon et al’s protocol [G. Gordon, G. Rigolin, Phys. Rev. A 73 (2006) 042309], this protocol has the advantage of transmitting much less qubits and classical information for teleporting an arbitrary N-qubit GHZ state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号