首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
胡海豹  何强  余思潇  张招柱  宋东 《物理学报》2016,65(10):104703-104703
采用高速摄像技术测试低温光滑壁面上水滴撞击结冰过程, 分析了撞击速度、壁面温度和材料热导率对水滴撞击铺展、振荡及结冰行为的影响规律. 结果表明, 低温壁面造成水滴最大铺展直径缩小, 且结冰时间随温度降低而缩短; 当撞击We数提高时, 水滴最大铺展直径增大, 而振荡和结冰时间减小; 同时材料热导率越高, 最大铺展直径越小, 结冰越迅速. 另外, 从热力学角度推导出水滴撞击结冰时间的理论公式, 预测误差<5.3%.  相似文献   

2.
The freezing and melting process of a small water droplet on a superhydrophobic cold surface was investigated using the Laser Induced Fluorescence (LIF) technique. The superhydrophobic surface was prepared using a sol-gel method on a red copper test plate. From the obtained fluorescence images, the phase transition characteristics during the freezing and melting process of a water droplet were clearly observed. It was found that, at the beginning of the droplet freezing process, liquid water turned into ice at a very fast rate. Such phase transition process decreased gradually with time and the volume of frozen ice approached a constant value at the end of the icing process. In addition, the freezing time was found to reduce with the decrease of the test plate temperature. Besides, when the test plate temperature is relatively high, the effect of droplet volume on the freezing time is very significant. Over all, we provide some tentative insights into the microphysical process related to the icing and melting process of water droplets.  相似文献   

3.
以宏观结冰/霜过程中过冷水滴的碰撞结冰现象为背景,实验对比了亲水和超疏水表面上常温水滴碰撞、常温水滴碰撞结冰和过冷水滴碰撞结冰的过程,建立了过冷水滴碰撞结冰过程的数值模型,研究了We数和接触角对碰撞结冰的影响。结果表明:相比于常温水滴的碰撞及其碰撞结冰过程,过冷水滴碰撞结冰过程的稳态铺展系数更大;随着过冷度和We数的增大以及接触角的减小,过冷水滴的碰撞结冰与常温水滴的碰撞在水滴形态和铺展系数上的差异逐渐增大。  相似文献   

4.
基于机器视觉的细水雾液滴尺寸测量与分析   总被引:5,自引:0,他引:5  
为了满足科研与工程中对细水雾液滴尺寸测量的高精度低成本要求,对雾滴尺寸的机器视觉测量方法进行了深入研究.在自行建立的高压喷雾系统与雾滴采集装置上对细水雾液滴进行了采样,用显微镜及其CCD相机对雾滴样本进行了图像采集,用图像处理软件对采集的雾滴图像进行了处理与分析,测量并统计了5966个雾滴,得到了雾滴尺寸的频谱分布和累积分布以及雾滴平均直径和特征直径,将测量结果与相位多普勒粒子分析仪(PDPA)的测量结果进行了比较.结果表明,机器视觉方法町测量的最小雾滴直径约4.39 μm;机器视觉测量结果与PDPA测最结果相当接近,两种方法测得的细水雾液滴平均直径和特征直径的相对误差均在5%以内,雾滴尺寸均匀度指数的相对误差为0.27%.  相似文献   

5.
本文利用微区拉曼技术,研究硫酸镁液滴水和重水交换的动力学.在低湿度时,由接触离子对连接形成的链状结构使硫酸镁液滴表面形成胶态结构,阻碍其与环境之间的水交换,造成表面和内部的结构差异.拉曼光谱的高空间分辨能力为观测这一特殊的表面结构提供了便利.沉积在聚四氟乙烯疏水基底上的硫酸镁重水液滴呈球形,可以实现对液滴表面和中心的两...  相似文献   

6.
Summary We present a model for a polydisperse ensemble of two-dimensional droplets wich accounts for the effects of arbitrarily large distortions of the droplet shape. Interactions within a droplet include bending rigidity and spontaneous curvature. Interactions between droplets are omitted. Even at high temperatures, the effects of the shape fluctuations on the droplet size distribution remain small, as they are dominated by the contributions from the mixing entropy. In contrast, shape fluctuations lead to a pronounced peak in thermodynamic quantities like specific heat. This peak occurs at temperatures where thermal excitations become of the order of the bending energies of the droplet surface. The fluctuation-dominated regime extends to temperatures far lower than expected from a mean-field calculation. Paper presented at the I International Conference on Scaling, Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

7.
低温表面上的液滴冻结时会形成具有尖顶的形状。针对这一现象开展了理论与实验研究,建立了新的动态曲形相界面模型用来模拟水滴冻结过程中的形状变化。模型考虑重力和成核再辉效应的影响,将冻结过程中的冰水相界面近似为球冠形曲面,并在三相点处引入动态生长角和直角关系。对壁面上20μL静止水滴进行了冻结实验,记录水滴三相点高度的演化过程,以此拟合得到了其随时间变化的关联式,基于该关联式求解理论模型,得到了水滴最终冻结形状。模拟结果与实验结果在水滴初始轮廓、成核再辉轮廓和最终冻结轮廓以及冻结时间上均吻合良好。曲面模型的计算结果表明,固液相界面上不同位置处的冻结速率不同;随着相界面向上推移,冻结速率逐渐减小。  相似文献   

8.
The effect of aggregation of dispersed water droplets on secondary atomization of emulsified fuel droplets in a heating process was investigated. Secondary atomization was observed using a single droplet experiment in which a water-in-oil (W/O) emulsified fuel droplet prepared using colored water was heated by a halogen heater. The initial diameter of dispersed water droplets before heating was controlled, and the change in the diameter of dispersed water droplets was measured by image analysis. As a result, the aggregation process of dispersed water droplets in the heating process was successfully visualized. The dispersed water droplet diameter increased with an increase in W/O emulsified fuel droplet temperature. The occurrence probability of micro-explosion increased with an increase in the dispersed water droplet diameter in emulsified fuel droplets. It is suggested that the occurrence probability of micro-explosion can be increased by accelerating the aggregation and coalescence of dispersed water droplets below 430 K, which is the average temperature of the starting point of puffing.  相似文献   

9.
董琪琪  胡海豹  陈少强  何强  鲍路瑶 《物理学报》2018,67(5):54702-054702
利用三维分子动力学模拟方法,研究了纳米尺度水滴撞击冷壁面的结冰过程.数值模拟中,统计系统采用微正则系综,势能函数选用TIP4P/ice模型,温度校正使用速度定标法,牛顿运动方程的求解采用文莱特算法,水滴内部结冰过程则通过统计垂直方向水分子温度分布来判定.研究发现,当冷壁面温度降低时,水滴完全结冰的时间减小,但水滴降至壁面温度的时间却增大;同时随着壁面亲水性降低,水滴内部热传递速度减慢(尤其是冷壁面与水滴底端分子层间),水滴内部温度趋于均匀,但水滴完全结冰时间延长.  相似文献   

10.
Light scattering by an optically anisotropic liquid crystal (LC) droplet of a nematic in an isotropic polymer matrix is considered in the Wentzel–Kramers–Brillouin (WKB) approximation. General relations are obtained for elements of the amplitude matrix of light scattering by a droplet of arbitrary shape and for the structure of the director field. Analytic expressions for the amplitude matrices are derived for spherical LC droplets with a uniformly oriented structure of local optical axes for strictly forward and strictly backward scattering. The efficiency factors of extinction and backward scattering for a spherical nonabsorbing LC droplet depending on the LC optical anisotropy, refractive index of the polymer, illumination conditions, and orientation of the optical axis of the droplet are analyzed. Verification of the obtained solutions has been performed.  相似文献   

11.
This work describes a systematic approach adopted to establish Laser and Phase Doppler Anemometry, LDA/PDA, experimental techniques that would allow velocity and dropsize measurements to be made over wide velocity and size ranges with confidence in partially atomized sprays. The analysis considers the sprays generated by different gasoline direct injection (GDI) systems injecting into air under atmospheric conditions. The upper limit to the dropsize range in the fuel sprays was confirmed using (a) an Oxford Lasers' VisiSizer and (b) droplets of a known size produced by a mono‐dispersed droplet generator. GDI fuel sprays are highly transient, optically dense and provide a high degree of penetration and atomization. The measurement problem is therefore one of the detection of small, high speed droplets inside a dense cloud of surrounding droplets. Furthermore, under the transients found at the start and end of injection and during high fuel loads, fuel elements in the form of sheets, ligaments and filaments are also injected. These liquid fuel elements subsequently break‐up, downstream from the nozzle, to form droplets of a much larger size class but with a much lower number density [1]. The co‐existence of these liquid fuel elements and the widely different size classes in the spray are considered to pose a problem for dropsize measurements by the PDA technique. In particular: the wide dynamic range of light intensities scattered by the fuel elements and droplets; the trajectory of large drops through the edges of the PDA measurement volume with its Gaussian intensity distribution [2] and the high probability of non spherical droplets. The work concludes that the LDA/PDA measurement technique, as applied here, is robust. It can discriminate between partially and fully atomized sprays, has a high probability of accurately measuring dropsizes larger than the measurement volume and give a realistic indication of ‘sizes’ for non spherical droplets. However, specification of the PDA system parameters must be strictly compatible with the measurement task to yield unambiguous results.  相似文献   

12.
快速减压条件下液滴热动力学行为的实验研究   总被引:2,自引:0,他引:2  
实验研究了快速降压过程中悬挂单水滴闪蒸/冻结过程,得到了典型条件下液滴闪蒸/冻结过程的热动力学特征,并基于实验观测结果,探讨了不凝气体对液滴闪蒸/冻结热动力学过程的影响。实验发现,起始冻结时的液滴过冷度近似为常数,而再辉温度对应于终态蒸汽分压所确定的气固相变平衡温度。这些结果有助于正确预言高真空环境中的液滴闪蒸/冻结特征。  相似文献   

13.
The influence of droplet crystallization and melting on the ultrasonic properties of oil-in-water emulsions has been investigated. The ultrasonic velocity and attenuation were measured in a series of 3 wt% n-hexadecane-in-water emulsions as a function of frequency (0.3–4 MHz), droplet diameter (0.4 and 1 μm) and temperature (0–25°C). The emulsified n-hexadecane crystallized at about 5°C due to supercooling effects and melted at about 18°C. As solid and liquid n-hexadecane have significantly different ultrasonic properties, an appreciable change in the velocity and attenuation is observed during the phase transition. This behaviour is modified significantly in systems where the emulsion droplets are partially crystalline because the temperature fluctuations associated with the ultrasonic wave can perturb the phase equilibria solid liquid causing excess attenuation and velocity dispersion. The magnitude of this effect depends on the ultrasonic frequency and the average droplet size.  相似文献   

14.
The laser measurement technique based on the ratio between the laser induced fluorescence (LIF) and the scattered light (Mie) intensities of droplets is presently limited to the evaluation of the Sauter mean diameter of the droplets. The important measurement of the droplet size spread is currently missing. An extension of the LIF/Mie technique for the measurement of droplet size spread is proposed here and is evaluated numerically. The method is based on the imperfect relationships between the scattered light intensity and the droplet surface area or the fluorescent light intensity and the droplet volume, which convey additional information that can be used to evaluate the droplet size spread.  相似文献   

15.
The third-order susceptibility and second-order hyperpolarizability and the two-photon absorption coefficient of Eosin-B in AOT/water/Heptane were investigated by using the Z-Scan technique. The droplets were prepared with an AOT/water droplet in a continuous phase of Heptane. The droplets size changes with the amount of water and the droplet concentration decreases with the increase of Heptane concentration. To study the nonlinear optical properties of Eosin-B, the Z-scan measurements were performed by means of a laser at 532 nm and 80 mW power. The nonlinear refractive and the nonlinear absorption coefficient indices were found to be in the order of 10?12 (cm2 W?1) and 10?7 (cm W?1), respectively. The change of nonlinear optical properties of Eosin-B by droplet size and concentration is due to the change of dye aggregation and thermal conductivity and thermo-optic coefficient of samples. The absorption of Eosin-B changes with the polarity of the medium (dielectric constant and refractive index). It has been shown that the intensity of emission spectra of Eosin-B in AOT/water/Heptane is enhanced compared to that of aqueous solution. By the Bilot and Kawski theory, the ratio between the excited state and the ground state of the dipole moments (μeg) of Eosin-B both in water and in droplets is extracted.  相似文献   

16.
Electro-optical phase shift in polymer dispersed liquid crystals   总被引:1,自引:0,他引:1  
An anisotropic version of the Maxwell Garnett approximation is applied for studying the electro-optical phase modulation by polymer dispersed liquid crystals (PDLC). The PDLC contain bipolar liquid crystal droplets that can be reoriented by an external field causing a change in the optical birefringence. This approach provides an explicit link between the droplet orientation distribution and the electro-optical phase shift. For aligned droplets we find that the sharpness of the change in the birefringence may be controlled by selecting the initial orientation. For a planar distribution we find sharp transitions with a hysteresis loop whose width depends on the droplet concentration. For a random distribution, the droplet orientation and the optical phase shift change more gradually with the applied field. These results demonstrate that PDLC may be suitable for a wide range of electro-optic applications based on their field-induced phase modulation properties. In addition, it is apparent that the optical phase shift is quite sensitive to changes in droplet orientation. It should therefore be useful for studying reorientation phenomena in PDLC, overcoming the problems due to light scattering in these materials. Received 25 November 1999 and Received in final form 20 January 2000  相似文献   

17.
Cholesteric droplets in ferroelectric free-standing films with tunable anchoring on the droplet boundary are investigated. A droplet and satellite topological defect(s) form a topological dipole. We obtained droplets with different angles α between two radial lines from the droplet center to −1/2 topological defects. Droplets with parallel dipoles form linear chains in which the interparticle distances decrease with increasing the defect angle α. For the first time, the dependence of the interparticle distance on the angle between topological defects was measured. We can adjust the magnitude and orientation of topological dipoles formed by the droplets. For the first time, the droplets with antiparallel topological dipoles were prepared in a smectic film. Interaction of the droplets with parallel and antiparallel dipoles differs drastically. Formation of antiparallel dipoles leads to a decomposition of the droplet pairs and chains of droplets. Our observations may be used to change the magnitude, anisotropy of the interparticle interaction, and structures of inclusions in liquid crystal media. The article is published in the original.  相似文献   

18.
The improvement of the basic understanding of heat transfer in sprays is a key point in many engineering applications. In this paper, the temperature field within combusting ethanol droplets in linear stream is investigated by the two-color laser induced fluorescence technique. Additionally, a heat transfer model within the droplet is developed, taking into account both heat conduction and heat advection by the droplet internal fluid circulation, according to the Hill vortex pattern. Heat and mass exchanges between the liquid and the gas phases are described within the framework of the quasi-steady approach and the film theory. Comparisons between measurements and computational results allow determining the intensity of the Hill vortex related to the maximum velocity at the droplet surface. An expression of the friction coefficient for combusting and interacting droplets is derived from the case of an isolated droplet and a good agreement with the experimental data is observed.  相似文献   

19.
Measurements of droplet deformation during wall impingement were performed for ethanol droplets and water droplets with diameters ranging from 100 to 200 μm. The wall temperature is well above the Leidenfrost temperature of the droplet liquid. With monodisperse droplet streams and a special illumination technique, slow motion images of the phenomena can be obtained. Measurements with high temporal resolution below 1 μs are possible using a standard video camera. The experimental results are compared with numerical results, which were obtained by solving the three-dimensional Navier-Stokes equations for incompressible fluids including surface tension effects. The fluids are treated with the volume-of-fluid method and the free surface is modeled according to the continuum-surface-force model. Numerical and experimental results show good agreement.  相似文献   

20.
The binary collisions of a burning droplet and a non-burning droplet of xylene are experimentally investigated. The experimental parameters span an extensive range of Weber number and impact parameter, covering the collision outcome regimes of coalescence, reflexive separation, and stretching separation. A high-speed camera captures the temporal details of the collision process, involving flame spread, visible radiation, and flame distributions around droplets. For reflexive separation and stretching separation, the flame from the droplet spreads to the ligament, surrounding it during the interaction process, and then spreads around separated droplets and satellite droplets. Highly-interactive flames are formed in-between the droplets, with very sooty flames generated for most collisions. For the coalescence case, a swirling flame forms around the rotating coalesced droplet. For similar Weber numbers, visible flame radiation is compared for different collision regimes. The visible flame radiation changes more significantly for the reflexive and stretching separation cases than it does for the coalescence case. The change of the averaged visible flame radiation for reflexive separation and stretching separation is more than two times higher than that for coalescence. The map of three different collision regimes is plotted in the Weber number versus impact parameter domain and compared with available theoretical model predictions. Although the different outcomes of collision with the presence of flame can be well predicted by the model, using fluid properties determined by the averaged properties of the two droplets, the dynamics of the detailed processes involved in the collisions are very interesting and have strong implications on overall combustion behavior that go well beyond the mapped regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号