首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gold nanoparticles (GNPs) thin films, electrochemically deposited from hydrogen tetrachloroaurate onto transparent indium tin oxide (ITO) thin film coated glass, have different color prepared by variation of the deposition condition. The color of GNP film can vary from pale red to blue due to different particle size and their interaction. The characteristic of GNPs modified ITO electrodes was studied by UV-vis spectroscopy, scanning electron microscope (SEM) images and cyclic voltammetry. WO3 thin films were fabricated by sol-gel method onto the surface of GNPs modified electrode to form the WO3/GNPs composite films. The electrochromic properties of WO3/GNPs composite modified ITO electrode were investigated by UV-vis spectroscopy and cyclic voltammetry. It was found that the electrochromic performance of WO3/GNPs composite films was improved in comparison with a single component system of WO3.  相似文献   

2.
This study reports a novel electrochemical DNA biosensor based on zirconia (ZrO2) and gold nanoparticles (NG) film modified glassy carbon electrode (GCE). NG was electrodeposited onto the glassy carbon electrode at 1.5 V, and then zirconia thin film on the NG/GCE was fabricated by cyclic voltammetric method (CV) in an aqueous electrolyte of ZrOCl2 and KCl at a scan rate of 20 mV/s. DNA probes were attached onto the ZrO2/NG/GCE due to the strong binding of the phosphate group of DNA with the zirconia film and the excellent biocompatibility of nanogold with DNA. CV and electrochemical impedance spectroscopy (EIS) were used to characterize the modification of the electrode and the probe DNA immobilization. The electrochemical response of the DNA hybridization was measured by differential pulse voltammetry (DPV) using methylene blue (MB) as the electroactive indicator. After the hybridization of DNA probe (ssDNA) with the complementary DNA (cDNA), the cathodic peak current of MB decreased obviously. The difference of the cathodic peak currents of MB between before and after the hybridization of the probe DNA was used as the signal for the detection of the target DNA. The sequence-specific DNA of phosphinothricin acetyltransferase (PAT) gene in the transgenic plants was detected with a detection range from 1.0 × 10−10 to 1.0 × 10−6 mol/L, and a detection limit of 3.1 × 10−11 mol/L.  相似文献   

3.
Electronic states of gold nanoparticles in mordenite and their transformations under redox treatments have been studied by the methods of FTIR spectroscopy of adsorbed CO and diffuse reflectance UV-visible spectroscopy. Different states of ionic and metallic gold were detected in the zeolite channels and on the external surface of the zeolite - Au+ and Au3+ ions, charged clusters , and neutral nanoparticles Aum. Catalytic tests of the samples revealed the existence of two types of active sites of gold in CO oxidation - gold clusters <2 nm (low-temperature activity) and gold nanoparticles (high temperature activity).  相似文献   

4.
In the present study, a facile, rapid, and environmentally friendly method was used for the preparation of metal oxide nanoparticles in an ionic liquid medium. This technique involves mixing and heating the corresponding powder material (cadmium oxide, anatase, and hematite) and the selected ionic liquid (trihexyl(tetradecyl)phosphonium chloride, [P6,6,6,14]Cl), without any other precursors or solvents. The confirmation of the existence of nanoparticles in the ionic liquid was carried out using UV?CVis absorption spectroscopy, and its concentration was determined by X-ray fluorescence. In order to analyze the shape and size distribution, transmission electron microscopy and a ZetaSizer (DLS technique) were used; finding out that the size of the hematite nanoparticles was 10?C55?nm. Nevertheless, for the cadmium oxide and the anatase nanoparticles, the size was between 2 and 15?nm. The composition of the prepared nanoparticles was studied by Raman spectroscopy. The structure of solids did not suffer any modification in their transformation to the nanoscale, as concluded from the X-ray powder diffraction analysis.  相似文献   

5.
Medical interest in nanotechnology originates from a belief that nanoscale therapeutic devices can be constructed and directed towards its target inside the human body. Such nanodevices can be engineered by coupling superparamagnetic nanoparticle to biomedically active proteins. We hereby report the immobilization of a PhEst, a S-formylglutathione hydrolase from the psychrophilic P. haloplanktis TAC125 onto the gold coated surface of modified superparamagnetic core-shell nanoparticles (Fe3O4@Au). The synthesis of the nanoparticles is also reported. S-formylglutathione hydrolases constitute a family of ubiquitous enzymes which play a key role in formaldehyde detoxification both in prokaryotes and eukaryotes. PhEst was originally annotated as a putative feruloyl esterase, an enzyme that releases ferulic acid (an antioxidant reactive towards free radicals such as reactive oxygen species) from polysaccharides esters. Dynamic light scattering, scanning electron microscopy with energy dispersive X-ray spectroscopy, UV–visible absorption spectroscopy, fluorescence spectroscopy, magnetic separation technique and enzyme catalytic assay confirmed the chemical composition of the gold covered superparamagnetic nanoparticles, the binding and activity of the enzyme onto the nanoparticles. Activity data in U/ml confirmed that the immobilized enzyme is approximately 2 times more active than the free enzyme in solution. Such particles can be directed with external magnetic fields for bio-separation and focused towards a medical target for therapeutical as well as bio-sensor applications.  相似文献   

6.
In this work, a ZnO/nanoparticles (NPs) modified carbon ionic liquid paste electrode (ZnO/NP/CILPE) was fabricated and used to investigate the electrochemical behavior of folic acid. ZnO/NP/CILPE was prepared by mixing hydrophilic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim]-[PF6])), ZnO/NPs, graphite powder, and liquid paraffin together. The fabricated ZnO/NP/CILPE showed great electrocatalytic ability to the oxidation of folic acid, and an irreversible oxidation peak appeared at 0.75 V (vs. Ag/AgCl) with improved peak current. Under the optimized conditions of pH 9.0, the plot of peak current vs. folic acid concentration consisted of two linear segments with slopes of 1.776and 0.033 μA/μM in the concentration ranges of 0.05–1.5 μM and 1.5–550.0 μM, respectively. The detection limit was 0.01 μM (3σ). The proposed sensor was successfully applied for the determination of folic acid in fortified food and pharmaceutical samples.  相似文献   

7.
Hydrophobically modified chitosan/gold nanoparticles for DNA delivery   总被引:1,自引:0,他引:1  
Present study dealt an application of modified chitosan gold nanoparticles (Nac-6-Au) for the immobilization of necked plasmid DNA. Gold nanoparticles stabilized with N-acylated chitosan were prepared by graft-onto approach. The stabilized gold nanoparticles were characterized by different physico-chemical techniques such as UV-vis, TEM, ELS and DLS. MTT assay was used for in vitro cytotoxicity of the nanoparticles into three different cell lines (NIH 3T3, CT-26 and MCF-7). The formulation of plasmid DNA with the nanoparticles corresponds to the complex forming capacity and in-vitro/in-vivo transfection efficiency was studied via gel electrophoresis and transfection methods, respectively. Results showed the modified chitosan gold nanoparticles were well-dispersed and spherical in shape with average size around 10~12 nm in triple distilled water at pH 7.4, and showed relatively no cytotoxicity at low concentration. Addition of plasmid DNA on the aqueous solution of the nanoparticles markedly reduced surface potential (50.0~66.6%) as well as resulted in a 13.33% increase in hydrodynamic diameters of the formulated nanoparticles. Transfection efficiency of Nac-6-Au/DNA was dependent on cell type, and higher β-galactosidase activity was observed on MCF-7 breast cancer cell. Typically, this activity was 5 times higher in 4.5 mg/ml nanoparticles concentration than that achieved by the nanoparticles of other concentrations (and/or control). However, this activity was lower in in-vitro and dramatically higher in in-vivo than that of commercially available transfection kit (Lipofectin®) and DNA. From these results, it can be expected to develop alternative new vectors for gene delivery.  相似文献   

8.
A sodium ion-conducting polymer electrolyte based on polyvinyl pyrrolidone (PVP) complexed with NaClO4 was prepared using the solution-cast technique. The cathode film of V2O5 xerogel modified with polyvinyl pyrrolidone was prepared using the sol-gel method. Investigations were conducted using X-ray diffractometry (XRD), Fourier transformation infrared (FT-IR) spectroscopy. The ionic conductivity and transference number measurements were performed to characterize the polymer electrolyte for battery applications. The transference number data indicated that the conducting species in these electrolytes are the anions. Using the electrolyte, electrochemical cells with a configuration Na/(PVP + NaClO4)/V2O5 modified by (PVP) were fabricated and their discharge profiles studied.  相似文献   

9.
The electronic states of gold in gold supported nanoparticles modified by Ce, Zr, La and Cs oxides have been studied by the methods of IR spectroscopy of adsorbed CO, UV-visible spectroscopy of diffuse reflectance, XRD and electron microscopy. The additives of Ce and Zr oxides stabilize the ionic states of supported gold and increase the effective charge of the ions. In contrast, La and Cs oxides lower the ion effective charge and favour their fast reduction under redox treatments and reaction medium. It is explained by electron donor-acceptor interaction of the supported metal nanoparticles with the modifiers.  相似文献   

10.
Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O2–H2 mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration.  相似文献   

11.
In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV–Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV–Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.  相似文献   

12.
Aqueous suspensions of composite nanoparticles of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) are fabricated by miniemulsion method using three different ionic surfactants. The aim is to study how the length and conformation of the surfactants alkyl chains affect the properties of the nanoparticles. While the morphology and dimensions of the nanoparticles are similar, UV–vis spectroscopy evidences that the internal aggregation and ordering of the P3HT chains varies within the three nanoparticle formulations. The surfactant with branched alkyl chains promote the highest degree of ordering of P3HT chains in the nanoparticles (leading to increased conjugation length). In contrast, the lowest ordering is found for the nanoparticles with the surfactant having the shortest linear alkyl chain. The optical/structural properties of nanoparticles are partially retained in the films. Besides, the surfactant with branched alkyl chains favors the strongest coalescence of nanoparticles in the thin film, promoting a further ordering of the polymeric chains in the most external shell of the nanoparticles as evidenced by steady-state and time-resolved UV–vis spectroscopy and confocal fluorescence microscopy. These findings might guide the engineering of new surfactants for composite nanoparticles for optoelectronic applications.  相似文献   

13.
In this work, we use electrochemical oxidation–reduction cycles (ORC) methods to prepare surface‐enhanced Raman scattering (SERS)‐active gold substrates modified with SiO2 nanoparticles to improve the corresponding SERS performances. Based on the modified substrates, the SERS of Rhodamine 6G (R6G) exhibits a higher intensity by 3‐fold of magnitude, as compared with that of R6G adsorbed on a SERS‐active Au substrate without the modification of SiO2 nanoparticles. Moreover, the SERS enhancement capabilities of the modified and the unmodified Au substrates are seriously destroyed at temperatures higher than 250 and 200 °C, respectively. These results indicate that the modification of SiO2 nanoparticles can improve the thermal stability of SERS‐active substrates. The aging in SERS intensity is also depressed on this modified Au substrate due to the contribution of SiO2 nanoparticles to SERS effects. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
We reported a facile method for preparing self-assembly gold nanochains by using insulin fibrils as biotemplate in aqueous environment. The gold nanochains hybrid nanostructures, which are insulin fibrils coated by gold nanoparticles, can be fabricated by simply reducing the salt precursors using DMAB. By increasing the molar ratio between salt precursors and insulin, denser hybrid nanochains can be obtained, meanwhile the mean diameter of gold nanoparticles is changing from 8 to 10 nm and then to 12 nm. The fabricated gold nanochains hybrid had helix structure, which was confirmed by circular dichroism spectra. The hybrid nanostructures were also investigated by transmission electron microscope, atomic force microscope, Fourier transform infrared spectra, and UV–Visible spectroscopy. As the wire-like structure become denser, the suspensions show color-changing, corresponding to the surface plasmon resonance red shift, which is attributed to the increasing mean size of nanoparticles. Based on the characterizations, a hypothetic mechanism was suggested to describe the formation processing of hybrid gold nanochains.  相似文献   

15.
In this paper, we reported for the first time magnesium electrodeposition and dissolution processes in the ionic liquid of BMIMBF4 with 1 M Mg(CF3SO3)2 at room temperature. Our study found that complete electrochemical reoxidation of the electrodeposited magnesium film was feasible only on Ag substrate, comparing with the Pt, Ni, and stainless-steel. Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) results showed that magnesium was found in the deposited film and the deposits were dense. The electrodeposition of magnesium on Ag substrate in the ionic liquid was considered to be a reversible process by cyclic voltammetry. Plots of peak current versus the square root of the scan rate were found to be linear, which indicates that the mass-transport process of electroactive species was mainly diffusion controlled. The diffusion coefficient D values of electroactive species were calculated from cyclic voltammetry and chronoamperometry, respectively.  相似文献   

16.
In this work, formation of gold nanoparticles in radio frequency (RF) reactive magnetron co-sputtered Au-SiO2 thin films post annealed at different temperatures in Ar + H2 atmosphere has been investigated. Optical, surface topography, chemical state and crystalline properties of the prepared films were analyzed by using UV-visible spectrophotometry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD) techniques, respectively. Optical absorption spectrum of the Au-SiO2 thin films annealed at 800 °C showed one surface plasmon resonance (SPR) absorption peak located at 520 nm relating to gold nanoparticles. According to XPS analysis, it was found that the gold nanoparticles had a tendency to accumulate on surface of the heat-treated films in the metallic state. AFM images showed that the nanoparticles were uniformly distributed on the film surface with grain size of about 30 nm. Using XRD analysis average crystalline size of the Au particles was estimated to about 20 nm.  相似文献   

17.
Results of the Raman spectroscopy analysis of a new composite material based on a thin polycrystalline LiF film containing gold nanoparticles are presented. The formation of spherical gold nanoparticles in the film has been confirmed by the X-ray structural analysis and observation of the optical plasmon resonance absorption spectrum with a maximum at 534 nm. The obtained composite layers have been subjected to annealing by ruby laser (λ = 694 nm) in the spectral region on a descending long-wavelength wing of the plasmon absorption band of gold nanoparticles. Raman spectroscopy has been applied for the first time to the investigation of the modification of the shape of gold nanoparticles in LiF during laser annealing. The experimental Raman spectra are compared with calculated modes of in-phase bending vibrations generated in gold nanoparticles.  相似文献   

18.
Herein, a facile method was developed for preparing high concentration of monodispersed gold nanoparticles (NPs) at room temperature from gold(III) chloride by using different media based on N,N-dimethylformamide or water solutions containing a protic ionic liquid (PIL), namely, the octylammonium formate or the bis(2-ethyl-hexyl)ammonium formate, based on which both PILs were used as redox-active structuring media. The formation of gold NPs in these systems was then characterized using UV–visible spectroscopy, transmission electron microscopy, and dynamic light scattering. From these investigations, it appears that the structure and aggregation pathway of PILs in selected solvents affect strongly the formation, growth, the shape, and the size of gold NPs. In fact, by using this approach, the shape-/ size-controlled gold NPs (branched and spherical) can be generated under mild condition. This approach suggests also a wealth of potential for these designer nanomaterials within the biomedical, materials, and catalysis communities by using designer and safer media based on PILs.  相似文献   

19.
The mixture of nanostructures derived from the surface interactions and reactivity of ZnO nanoparticles with the room-temperature ionic liquid (IL1) 1-hexyl, 3-methylimidazolium hexafluorophosphate has been studied. Results are discussed on the basis of transmission electron microscopy (TEM) observations, energy dispersive spectroscopy (EDS) analysis, X-ray diffraction (XRD) patterns and X-ray photoelectron spectroscopy (XPS) determinations. Size and morphology changes in ZnO nanoparticles by surface modification with IL1 are observed. ZnF2 crystalline needles due to reaction with the hexafluorophosphate anion are also formed.  相似文献   

20.
A new method is reported for detecting heavy metal ions by using the self assembled monolayer (SAM) technique and surface enhanced Raman spectroscopy (SERS). The p‐mercaptobenzoic acid (MBA) served as the SERS readout molecule and the modified tag to attach on the smooth gold substrate as well as the tag of nanoparticles by the SAM method. Two carboxyl groups from MBA molecules which were attached respectively to gold substrate and gold nanoparticles were linked through the heavy metal ions (Cu2+, Pb2+ and Zn2+) as bridge, and thus sandwich structure of ‘MBA modified gold substrate/heavy metal ions/MBA modified gold nanoparticles’ was built for detection. The observation of the oxidation peak of metal nanoparticles from cyclic voltammetry (CV) curve, gold nanoparticles from scanning electron microscopy (SEM) images and SERS signal of MBA from the sandwich structure indicated the existence of heavy metal ions. The difference in the wavenumbers of vibrational modes from MBA in the sandwich structure constructed by different could be used to identify different heavy metal ions. The assembled structure was rinsed by strong chelator of EDTA solution to remove the heavy metal ions from the sandwich structure and thus to obtain a fresh gold substrate modified with MBA for the cyclic detection. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号