首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Several N -body problems in ordinary (3-dimensional) space are introduced which are characterized by Newtonian equations of motion (“acceleration equal force;” in most cases, the forces are velocity-dependent) and are amenable to exact treatment (“solvable” and/or “integrable” and/or “linearizable”). These equations of motion are always rotation-invariant, and sometimes translation-invariant as well. In many cases they are Hamiltonian, but the discussion of this aspect is postponed to a subsequent paper. We consider “few-body problems” (with, say, N =1,2,3,4,6,8,12,16,...) as well as “many-body problems” (N an arbitrary positive integer). The main focus of this paper is on various techniques to uncover such N -body problems. We do not discuss the detailed behavior of the solutions of all these problems, but we do identify several models whose motions are completely periodic or multiply periodic, and we exhibit in rather explicit form the solutions in some cases.  相似文献   

2.
The famous three-body problem can be traced back to Isaac Newton in the 1680 s. In the 300 years since this "three-body problem"was first recognized, only three families of periodic solutions had been found, until 2013 when ˇSuvakov and Dmitraˇsinovi′c [Phys.Rev. Lett. 110, 114301(2013)] made a breakthrough to numerically find 13 new distinct periodic orbits, which belong to 11 new families of Newtonian planar three-body problem with equal mass and zero angular momentum. In this paper, we numerically obtain 695 families of Newtonian periodic planar collisionless orbits of three-body system with equal mass and zero angular momentum in case of initial conditions with isosceles collinear configuration, including the well-known figure-eight family found by Moore in 1993, the 11 families found by ˇSuvakov and Dmitraˇsinovi′c in 2013, and more than 600 new families that have never been reported, to the best of our knowledge. With the definition of the average period T = T=Lf, where Lf is the length of the so-called "free group element", these 695 families suggest that there should exist the quasi Kepler's third law T* ≈ 2:433 ± 0:075 for the considered case, where T*= T|E|~(3/2) is the scale-invariant average period and E is its total kinetic and potential energy,respectively. The movies of these 695 periodic orbits in the real space and the corresponding close curves on the "shape sphere"can be found via the website: http://numericaltank.sjtu.edu.cn/three-body/three-body.htm.  相似文献   

3.
We associate a system of integrable, generalised nonlinear Schrödinger (NLS) equations with each Hermitian symmetric space. These NLS equations are considered as reductions of more general systems, this time associated with a reductive homogeneous space. The nonlinear terms are related to the curvature and torsion tensors of the appropriate geometrical space. The Hamiltonian structure is investigated using “r-matrix” techniques and shown to be “canonical” for all these equations. Throughout the reduction procedure this Hamiltonian structure does not degenerate. Each of the above systems of equations is gauge equivalent to a generalised ferromagnet. Reductions of the latter are discussed in terms of the corresponding NLS type equations.  相似文献   

4.
We report on the experimental investigation of gluing bifurcations in the analog electronic circuit which models a dynamical system of the third order: Lorenz equations with an additional quadratic nonlinearity. Variation of one of the resistances in the circuit changes the coefficient at this nonlinearity and replaces the Lorenz route to chaos by a different scenario which leads, through the sequence of homoclinic bifurcations, from periodic oscillations of the voltage to the irregular ones. Every single bifurcation “glues” in the phase space two stable periodic orbits and creates a new one, with the doubled length: a sequence of such bifurcations results in the birth of the chaotic attractor.  相似文献   

5.
We establish a hierarchical ordering of periodic orbits in a strongly coupled multidimensional Hamiltonian system. Phase space structures can be reconstructed quantitatively from the knowledge of periodic orbits alone. We illustrate our findings for the hydrogen atom in crossed electric and magnetic fields.  相似文献   

6.
Primarily motivated by the stability analysis of nonlinear waves in second-order in time Hamiltonian systems, in this paper we develop an instability index theory for quadratic operator pencils acting on a Hilbert space. In an extension of the known theory for linear pencils, explicit connections are made between the number of eigenvalues of a given quadratic operator pencil with positive real parts to spectral information about the individual operators comprising the coefficients of the spectral parameter in the pencil. As an application, we apply the general theory developed here to yield spectral and nonlinear stability/instability results for abstract second-order in time wave equations. More specifically, we consider the problem of the existence and stability of spatially periodic waves for the “good” Boussinesq equation. In the analysis our instability index theory provides an explicit, and somewhat surprising, connection between the stability of a given periodic traveling wave solution of the “good” Boussinesq equation and the stability of the same periodic profile, but with different wavespeed, in the nonlinear dynamics of a related generalized Korteweg–de Vries equation.  相似文献   

7.
In this work, the existence of a saddle-node bifurcation of invariant cones in three-dimensional continuous homogeneous piecewise linear systems is considered. First, we prove that invariant cones for this class of systems correspond one-to-one to periodic orbits of a continuous piecewise cubic system defined on the unit sphere. Second, let us give the conditions for which the sphere is foliated by a continuum of periodic orbits. The principal idea is looking for the periodic orbits of the continuum that persist when this situation is perturbed. To do this, we establish the relationship between the invariant cones of the three-dimensional system and the periodic orbits of two planar hybrid piecewise linear systems. Next, we define two functions whose zeros provide the invariant cones that persist under the perturbation. These functions will be called Melnikov functions and their properties allow us to state some results about the existence of invariant cones and other results about the existence of saddle-node bifurcations of invariant cones, which is the principal goal of this paper.  相似文献   

8.
We study numerically the periodic orbits of the Casati-Prosen map, a two-parameter reversible map of the torus, with zero entropy. For rational parameter values, this map preserves rational lattices, and each lattice decomposes into periodic orbits. We consider the distribution function of the periods over prime lattices, and its dependence on the parameters of the map. Based on extensive numerical evidence, we conjecture that, asymptotically, almost all orbits are symmetric, and that for a set of rational parameters having full density, the distribution function approaches the gamma-distribution R(x)=1−ex(1+x). These properties, which have been proved to hold for random reversible maps, were previously thought to require a stronger form of deterministic randomness, such as that displayed by rational automorphisms over finite fields. Furthermore, we show that the gamma-distribution is the limit of a sequence of singular distributions which are observed on certain lines in parameter space. Our experiments reveal that the convergence rate to R is highly non-uniform in parameter space, being slowest in sharply-defined regions reminiscent of resonant zones in Hamiltonian perturbation theory.  相似文献   

9.
10.
It was conjectured recently that the string worldsheet theory for the fast moving string in AdS times a sphere becomes effectively first order in the time derivative and describes the continuous limit of an integrable spin chain. In this paper we will try to make this statement more precise. We interpret the first order theory as describing the long term evolution of the tensionless string perturbed by a small tension. The long term evolution is a Hamiltonian flow on the moduli space of periodic trajectories. It should correspond to the renormgroup flow on the field theory side.  相似文献   

11.
周期参数扰动的T混沌系统同宿轨道分析   总被引:1,自引:0,他引:1       下载免费PDF全文
惠小健  王震  孙卫 《物理学报》2013,62(13):130507-130507
针对一类周期参数扰动的T混沌系统, 通过变换将系统转化为具有广义Hamilton结构的周期参数扰动的慢变系统, 运用Melnikov方法对系统的同宿轨道进行了分析计算, 并给出了系统的同宿轨道参数分支条件. 同时, 通过数值实验, 对周期参数扰动控制策略及同宿轨道进行了仿真, 验证了文中理论分析的正确性. 关键词: Hamilton系统 Melnikov方法 同宿轨道 周期参数扰动  相似文献   

12.
This paper extends the theory of the Maslov index of solitary waves in Part 1 to the case where the phase space is of dimension greater than four. The starting point is Hamiltonian PDEs, in one space dimension and time, whose steady part is a Hamiltonian ODE with a phase space of dimension six or greater. This steady Hamiltonian ODE is the main focus of the paper. Homoclinic orbits of the steady ODE represent solitary waves of the PDE, and one of the properties of the homoclinic orbits is the Maslov index. We develop formulae for the Maslov index, the Maslov angle and its subangles, in an exterior algebra framework, and develop numerical algorithms to compute them. In addition, a new numerical approach based on a discrete QR algorithm is proposed. The Maslov index is of interest for classifying solitary waves and as an indicator of stability or instability of the solitary wave in the time-dependent problem. The theory is applied to a class of reaction-diffusion equations, the longwave-shortwave resonance equations and the seventh-order KdV equation.  相似文献   

13.
Currently,the fifteen new periodic orbits of Newtonian three-body problem with equal mass were found by Suvakov and Dmitra sinovi[Phys Rev Lett,2013,110:114301]using the gradient descent method with double precision.In this paper,these reported orbits are checked stringently by means of a reliable numerical approach(namely the"Clean Numerical Simulation",CNS),which is based on the arbitrary-order Taylor series method and data in arbitrary-digit precision with a procedure of solution verification.It is found that seven among these fifteen orbits greatly depart from the periodic ones within a long enough interval of time,and are thus most possibly unstable at least.It is suggested to carefully check whether or not these seven unstable orbits are the so-called"computational periodicity"mentioned by Lorenz in 2006.This work also illustrates the validity and great potential of the CNS for chaotic dynamic systems.  相似文献   

14.
本文用解析方法分析了反转磁场位形中反转力线处粒子运动以及引导中心性质,从哈密顿函数出发,讨论了粒子在准势场中的束缚运动的特征以及x-px相空间上的周期性质;给出了引导中心坐标、绝热不变量、运动频率和漂移速度等物理量的表达式,从而描写了粒子二维运动图象。该工作为不稳定性理论和非线性动力学理论的进一步研究打下基础。  相似文献   

15.
Finite Hamiltonian systems contain operators of position, momentum, and energy, having a finite number N of equally-spaced eigenvalues. Such systems are under the æis of the algebra su(2), and their phase space is a sphere. Rigid motions of this phase space form the group SU(2); overall phases complete this to U(2). But since N-point states can be subject to U(N) ?U(2) transformations, the rest of the generators will provide all N 2 unitary transformations of the states, which appear as nonlinear transformations—aberrations—of the system phase space. They are built through the “finite quantization” of a classical optical system.  相似文献   

16.
Compact billiards in phase space, or action billiards, are constructed by truncating the classical Hamiltonian in the action variables. The corresponding quantum mechanical system has a finite Hamiltonian matrix. In previous papers we defined the compact analog of common billiards, i.e., straight motion in phase space followed by specular reflections at the boundaries. Computation of their quantum energy spectra establishes that their properties are exactly those of common billiards: the short-range statistics follow the known universality classes depending on the regular or chaotic nature of the motion, while the long-range fluctuations are determined by the periodic orbits. In this work we show that the eigenfunctions also follow qualitatively the general characteristics of common billiards. In particular, we show that the low-lying levels can be classified according to their nodal lines as usual and that the high excited states present scars of several short periodic orbits. Moreover, since all the eigenstates of action billiards can be computed with great accuracy, Bogomolny's semiclassical formula for the scars can also be tested successfully.  相似文献   

17.
We study periodic orbits of Hamiltonian differential systems with three degrees of freedom using the averaging theory. We have chosen the classical integrable Hamiltonian system with the Hooke potential and we study periodic orbits which bifurcate from the periodic orbits of the integrable system perturbed with a non-autonomous potential.  相似文献   

18.
Summary Paradoxical games are nonconstant sum conflicts, where individual and collective rationalities are at variance and refer to a dyadic antagonism where the contestants blackmail each other. The state space dynamics of a class of such games has been previously studied in the planar case of two variablesx 1,x 2 (representing the propensities of the two parties to cooperate), for which phase space portraits have been obtained for a wide range of control parameters. In this paper, we extend the analysis to 3 dimensions, by allowing two of these parameters (the so-called ?tempting factors?) to oscillate in time. We observe on a Poincaré surface of section that the invariant manifolds of twounstable fixed pointsU 1 andU 1 intersect, and form heteroclinic and homoclinic orbits. Thus, sufficiently close toU 1 andU 2, one finds ?horseshoe? chaos and extremely sensitive dependence to initial conditions. Moreover, since the equations of motion can be written in Hamiltonian form, all the known phenomena of periodic, quasi-periodic and chaotic orbits can be observed around twostable fixed points, where the two parties become ?deadlocked? in an inconclusive exchange that never ends. To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.  相似文献   

19.
We notice that the fundamental frequencies of a slightly perturbed integrable Hamiltonian system are not time-constant inside a resonance but frequency modulated, as is evident from pendulum models and wavelet analysis. Exploiting an intrinsic imprecision inherent to the numerical frequency analysis algorithm itself, hence transforming a drawback into an opportunity, we define the Frequency Modulation Indicator, a very sensitive tool in detecting where fundamental frequencies are modulated, localizing so the resonances without having to resort, as in other methods, to the integration of variational equations. For the Kepler problem, the space of the orbits with a fixed energy has the topology of the product of two 2-spheres. The perturbation Hamiltonian, averaged over the mean anomaly, has surely a maximum and a minimum, to which correspond two periodic orbits in physical space. Studying the neighbourhood of these two elliptic stable points, we are able to define adapted action-angle variables, for example, the usual but “SO(4)-rotated” Delaunay variables. The procedure, implemented in the program KEPLER, is performed transparently for the user, providing a general scheme suited for generic perturbation. The method is then applied to the Stark-Quadratic-Zeeman problem, displaying very clearly the Arnold web of the resonances. Sectioning transversely one of the resonance strips so highlighted and performing a numerical frequency analysis, one is able to locate with great precision the thin stochastic layer surrounding a separatrix. Another very long (108 revolutions) frequency analysis on an orbit starting here reveals, as expected, a well defined pattern, which ensures that the integration errors do not eject the point out of the layer, and moreover a very slow drift in the frequency values, clearly due to Arnold diffusion.  相似文献   

20.
In this paper, we give a KAM theorem for a class of infinite dimensional nearly integrable Hamiltonian systems. The theorem can be applied to some Hamiltonian partial differential equations in higher dimensional spaces with periodic boundary conditions to construct linearly stable quasi–periodic solutions and its local Birkhoff normal form. The applications to the higher dimensional beam equations and the higher dimensional Schrödinger equations with nonlocal smooth nonlinearity are also given in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号