首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanometer scale Al/AlN multilayers have been prepared by dc magnetron sputtering technique with a columnar target. A set of Al/AlN multilayers with the Al layer thickness of 2.9 nm and the AlN layer thickness variation from 1.13 to 6.81 nm were determined. Low angle X-ray diffraction (LAXRD) was used to analyze the layered structure of multilayers. The phase structure of the coatings was investigated with grazing angle XRD (GAXRD). Mechanical properties of these multilayers were thoroughly studied using a nanoindentation and ball-on-disk micro-tribometer. It was found that the multilayer hardness and reduced modulus showed no strong dependence on the AlN layer thickness. Al2.9 nm/AlN1.13 nm multilayer had more excellent tribological properties than single layers and other proportion multilayers with a lowest friction coefficient of 0.15. And the tribological properties of all the multilayers are superior to the AlN single layer.  相似文献   

2.
AlN/BN纳米结构多层膜微结构及力学性能   总被引:2,自引:0,他引:2       下载免费PDF全文
喻利花  董师润  许俊华 《物理学报》2008,57(12):7776-7782
用射频磁控溅射法制备了AlN,BN单层膜及AlN/BN纳米多层膜.采用X射线衍射仪、高分辨率透射电子显微镜和纳米压痕仪对薄膜结构进行表征.分析表明:单层膜AlN为w-AlN结构,BN为非晶相.AlN/BN多层膜中BN的结构与BN层厚有关.当BN层厚小于0.55nm时,由于AlN层模板的作用,BN发生了外延生长,BN与AlN的结构相同;当BN层厚大于0.74nm时,BN为非晶.AlN/BN多层膜的硬度也与BN层的厚度有关.当BN层厚为1—2个分子层时,AlN/BN多层膜具有超硬效应;当BN层厚增加到0.74 关键词: AlN/BN多层膜 BN结构 超硬效应  相似文献   

3.
采用射频磁控溅射方法制备单层AlN, Si3N4薄膜和不同调制周期的AlN/Si3N4纳米多层膜.采用X射线衍射仪、高分辨透射电子显微镜和纳米压痕仪对薄膜进行表征.结果发现,多层膜中Si3N4层的晶体结构和多层膜的硬度依赖于Si3N4层的厚度.当AlN层厚度为4.0nm、 Si3N4层厚度 关键词: 3N4纳米多层膜')" href="#">AlN/Si3N4纳米多层膜 外延生长 应力场 超硬效应  相似文献   

4.
ZrAlN/ZrB2 multilayered superlattice coatings with modulation periods ranging from 20 nm to 60 nm were grown in magnetron sputtering chamber. X-ray diffraction (XRD), scanning electron microscopy (SEM) and nanoindention were employed to investigate the influence of modulation period on microstructure and mechanical properties of the multilayers. The sharp interfaces and nanoscale multilayered modulation were confirmed by SEM and XRD. The coating with modulation period of 40 nm and modulation ratio of 1:3 showed a marked polycrystalline structure with the strong mixture of ZrAlN (1 1 1), ZrB2 (0 0 1) and ZrB2 (1 0 1) textures. Meanwhile, it also possessed the highest hardness (36.4 GPa), elastic modulus (477 GPa), critical fracture load (76.48 mN), and lower residual stress, compared to those with other modulation periods and monolithic coatings.  相似文献   

5.
Improvement of mechanical and tribological properties on AISI D3 steel surfaces coated with [Ti-Al/Ti-Al-N]n multilayer systems deposited in various bilayer periods (Λ) via magnetron co-sputtering pulsed d.c. method, from a metallic binary target; has been studied in this work exhaustively. The multilayer coatings were characterized in terms of structural, chemical, morphological, mechanical and tribological properties by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy, nanoindentation, pin-on-disc and scratch tests, respectively. The failure mode mechanisms were studied by optical microscopy. Results from X-ray diffraction analysis revealed that the crystal structure of TiAl/TiAlN multilayer coatings has a tetragonal and FCC NaCl-type lattice structures for Ti-Al and Ti-Al-N, respectively, i.e., it was found to be non-isostructural multilayers. An enhancement of both hardness and elastic modulus up to 29 GPa and 260 GPa, respectively, was observed as the bilayer periods (Λ) in the coatings were decreased. The sample with a bilayer period (Λ) of 25 nm and bilayer number n = 100 showed the lowest friction coefficient (∼0.28) and the highest critical load (45 N), corresponding to 2.7 and 1.5 times better than those values for the coating deposited with n = 1, respectively. These results indicate an enhancement of mechanical, tribological and adhesion properties, comparing to the [Ti-Al/Ti-Al-N]n multilayer systems with 1 bilayer at 26%, 63% and 33%, respectively. This enhancement in hardness and toughness for multilayer coatings could be attributed to the different mechanisms for layer formation with nanometric thickness such as the novel Ti-Al/Ti-Al-N effect and the number of interfaces that act as obstacles for the crack deflection and dissipation of crack energy.  相似文献   

6.
In this work, the effect of modulation period (Λ) on Ti/TiN multilayer films deposited on high-speed-steel (HSS) substrates using pulse biased arc ion plating is reported. The crystallography structures and cross-sectional morphology of Ti/TiN multilayer films were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM), respectively. Their mechanical properties were determined via nanoindentation measurements, while the film/substrate adhesion via the scratch test. It was found that the highest hardness value reached 43 GPa for the modulation period of 54 nm, while the film/substrate adhesion also reached the highest value of 83 N. Furthermore, the hardness enhancement mechanism in the multilayer films is discussed.  相似文献   

7.
TiCN/TiNbCN multilayer coatings with enhanced mechanical properties   总被引:1,自引:0,他引:1  
Enhancement of mechanical properties by using a TiCN/TiNbCN multilayered system with different bilayer periods (Λ) and bilayer numbers (n) via magnetron sputtering technique was studied in this work. The coatings were characterized in terms of structural, chemical, morphological and mechanical properties by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nanoindentation. Results of the X-ray analysis showed reflections associated to FCC (1 1 1) crystal structure for TiCN/TiNbCN films. AFM analysis revealed a reduction of grain size and roughness when the bilayer number is increased and the bilayer period is decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period (Λ) was 15 nm (n = 200), yielding the highest hardness (42 GPa) and elastic modulus (408 GPa). The values for the hardness and elastic modulus are 1.6 and 1.3 times greater than the coating with n = 1, respectively. The enhancement effects in multilayer coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain the increase in hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayers taking into account the thickness reduction at individual single layers that make the multilayered system. The Hall-Petch model based on dislocation motion within layers and across layer interfaces, has been successfully applied to multilayers to explain this hardness enhancement.  相似文献   

8.
The structure and mechanical properties of the multilayers consisting of 5-73 nm thick titanium nitride (TiN) and 4.6 nm thick carbon nitride (CN) have been investigated. It has been found that the CN layers are amorphous and the TiN layers thinner than 17 nm are amorphous. The TiN layers become crystallized as the thickness is increased to 30 nm or thicker. The hardness from the composite response of the multilayered films and their substrates determined using continuous stiff measurement is smaller than the film-only hardness (without substrate effects) calculated using Bhattacharya-Nix empirical equation. The hardness increases with raising the thickness of TiN layers. With the crystallization of the TiN layer, the multilayers become even harder than that calculated based on the rule of mixtures. However, no enhancement in hardness has been observed when the TiN layers are amorphous.  相似文献   

9.
Theoretical calculations via a transfer matrix method (TMM) were performed to investigate the possibility of fullerene/AlN multilayer films acting as one-dimensional (1D) photonic band gap (PBG) crystals. The response within and out of the periodic plane of (C60, C70)/AlN multilayers was studied. (C60, C70)/AlN multilayer films presented incomplete PBG behavior in UV region. C60/AlN multilayers with two pairs of 49 nm-C60 and 21 nm-AlN layers exhibited a high reflectivity of 90.4% at a wavelength of about 200 nm. As a consequence, this photonic crystal may be important for achieving materials with an incomplete band gap in the UV region.  相似文献   

10.
SiO2的赝晶化及AlN/SiO2纳米多层膜的超硬效应   总被引:1,自引:0,他引:1       下载免费PDF全文
赵文济  孔明  黄碧龙  李戈扬 《物理学报》2007,56(3):1574-1580
采用反应磁控溅射法制备了一系列不同SiO2层厚度的AlN/SiO2纳米多层膜,利用X射线衍射仪、高分辨透射电子显微镜和微力学探针表征了多层膜的微结构和力学性能,研究了SiO2层在多层膜中的晶化现象及其对多层膜生长方式及力学性能的影响. 结果表明,由于受AlN六方晶体结构的模板作用,溅射条件下以非晶态存在的SiO2层在其厚度小于0.6 nm时被强制晶化为与AlN相同的六方结构赝晶体并与AlN形成共格外延生长. 由于不同模量的两调制层存在晶格错配度,多层膜中产生了拉、压交变的应力场,使得多层膜产生硬度升高的超硬效应. SiO2随层厚的进一步增加又转变为以非晶态生长,多层膜的外延生长结构受到破坏,其硬度也随之降低. 关键词: 2纳米多层膜')" href="#">AlN/SiO2纳米多层膜 赝晶化 应力场 超硬效应  相似文献   

11.
J. Yang 《Applied Surface Science》2007,253(12):5302-5305
ZrC/ZrB2 multilayered coatings with bilayer periods ranging from 4.4 to 35.5 nm were synthesized by r.f. magnetron sputtering. X-ray diffraction, scanning electron microscopy and nanoindention were employed to investigate the microstructure and mechanical properties of the nanoscale multilayers. The results indicated that all coatings had the clear multilayered structure with mixed ZrB2(0 0 1), ZrB2(0 0 2) and ZrC(1 1 1) preferred orientations. The maximum hardness (41.7 GPa) was observed in the multilayer with 27.5-nm thick period, which is about 25% higher than the rule-of-mixture value of the monolithic ZrC and ZrB2 coatings. It also exhibited the best adhesion. Its critical load was over 70 mN. While through insert ZrB2 into ZrC layer periodically, higher residual stress built in ZrC layer can be released.  相似文献   

12.
Al-C-N thin films with different Al contents were deposited on Si (1 0 0) substrates by closed-field unbalanced reactive magnetron sputtering in the mixture of argon and nitrogen gases. These films were subsequently vacuum-annealed at 700 °C and 1000 °C, respectively. The microstructures of as-deposited and annealed films were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM); while the hardness and elastic modulus values were measured by nano-indention method. The results indicated that the microstructure of both as-deposited and annealed Al-C-N films strongly depended on Al content. For thin films at low Al content, film delamination rather than crystallization occurred after the sample was annealed at 1000 °C. For thin films at high Al content, annealing led to the formation of AlN nanocrystallites, which produced nanocomposites of AlN embedded into amorphous matrices. Both the density and size of AlN nanocrystallites were found to decrease with increasing depth from the film surface. With increasing of annealing temperature, both hardness and elastic modulus values were decreased; this trend was decreased at high Al content. Annealing did not change elastic recovery property of Al-C-N thin films.  相似文献   

13.
Nanoscale multilayer CrN/ZrN coatings with bilayer thicknesses ranging from 11.7 to 66.7 nm were prepared by reactive magnetron sputtering techniques. The structure of the thin films was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction results showed that CrN individual layers presented a <1 1 1> preferred orientation in the multilayer coatings. The diffraction peaks of CrN shifted continuously to low diffraction angle with decreasing bilayer thickness. TEM observations showed that the multilayer did not form a superlattice structure instead of the coexistence of nanocrystalline CrN and ZrN layers. Columnar growth for all the coatings was observed by cross-sectional SEM. Nanoindentation tests showed that the multilayer coatings had almost a constant nanohardness of 29 GPa in spite of the variations of bilayer thickness. Pin-on-disk tests indicated that both the friction coefficients and wear rates increased when decreasing bilayer thickness. However, in comparison with the monolayer coating, the multilayer coatings exhibited excellent wear resistance.  相似文献   

14.
采用射频磁控溅射法制备了NbN,AlN单层膜及不同调制周期的AlN/NbN纳米结构多层膜,采用X射线衍射仪、小角度X射线反射仪和高分辨透射电子显微镜等对薄膜进行了表征.结果表明:单层膜AlN为六方结构,NbN为面心立方结构;AlN/NbN多层膜中AlN为六方结构,NbN为面心立方结构,界面处呈共格状态,其共格关系为c-NbN(111)面平行于h-AlN(0002)面,晶格错配度为013%.热力学计算表明:AlN/NbN多层膜中不论AlN层与NbN层的厚度如何,AlN层均不会形成亚稳的立方AlN,而是形成 关键词: AlN/NbN纳米结构多层膜 共格外延生长 异结构  相似文献   

15.
X-ray multilayer mirrors of period ranging from 9.6 to 1.7 nm, deposited using ion beam sputtering, have been examined using grazing incidence X-ray reflectivity (GIXRR) and grazing incidence X-ray diffraction. Detailed analysis of GIXRR data revealed that significant amount of re-sputtering of Si layer takes place while W deposition is underway. Re-sputtering is mainly due to bombardment of high-energy neutrals getting reflected from the W target. Due to re-sputtering interface of the multilayer becomes asymmetric. This puts a major hindrance in avoiding the intermixing and achieving sharp interfaces at shorter periods. Maximum thickness of Si which gets lost due to re-sputtering during deposition is ∼0.8 nm. The shortest period multilayer estimated, that could be deposited without intermixing, was 2.7 nm. These results are of significance for developing low period W/Si multilayers.  相似文献   

16.
喻利花  董师润  许俊华  李戈扬 《物理学报》2008,57(11):7063-7068
采用射频磁控溅射方法制备单层TaN,NbN和TiN薄膜和不同调制周期的TaN/TiN和NbN/TiN纳米多层膜.薄膜采用X射线衍射仪、高分辨率透射电子显微镜和显微硬度仪进行表征.结果表明TaN/TiN和NbN/TiN纳米多层膜在一定的调制周期范围内均呈共格界面,相应地均出现了超硬效应,且最大硬度值接近.分析了TaN/TiN与NbN/TiN纳米多层膜的超硬机理,TaN/TiN的晶格错配度与NbN/TiN的接近,但TaN/TiN的弹性模量差与NbN/TiN的有一定的差别,表明由于晶格错配使共格外延生长在界面处 关键词: TaN/TiN纳米多层膜 NbN/TiN纳米多层膜 外延生长 超硬效应  相似文献   

17.
Mirror-like and pit-free non-polar a-plane (1 1 −2 0) GaN films are grown on r-plane (1 −1 0 2) sapphire substrates using metalorganic chemical vapor deposition (MOCVD) with multilayer high-low-high temperature AlN buffer layers. The buffer layer structure and film quality are essential to the growth of a flat, crack-free and pit-free a-plane GaN film. The multilayer AlN buffer structure includes a thin low-temperature-deposited AlN (LT-AlN) layer inserted into the high-temperature-deposited AlN (HT-AlN) layer. The results demonstrate that the multilayer AlN buffer structure can improve the surface morphology of the upper a-plane GaN film. The grown multilayer AlN buffer structure reduced the tensile stress on the AlN buffer layers and increased the compressive stress on the a-plane GaN film. The multilayer AlN buffer structure markedly improves the surface morphology of the a-plane GaN film, as revealed by scanning electron microscopy. The effects of various growth V/III ratios was investigated to obtain a-plane GaN films with better surface morphology. The mean roughness of the surface was 1.02 nm, as revealed by atomic force microscopy. Accordingly, the multilayer AlN buffer structure improves the surface morphology and facilitates the complete coalescence of the a-plane GaN layer.  相似文献   

18.
In this research work, Ti/TiAlN multilayers of various designs were deposited onto substrates pretreated by different etching procedures. The influence of multilayer design and substrate pretreatment on multilayers adhesion, hardness, wear and friction coefficients was systematically analyzed and correlated with residual stresses of these multilayers as well as with residual stresses on the coating-near substrate region, which were analyzed by synchrotron X-ray diffraction at HZB-BESSYII. These investigations show that the adhesion can be improved by a specific etching procedure, which cause increased compressive stress in the coating-near the substrate region. Additionally, it was found, that the multilayer with the thickest ceramic layers has the highest hardness and the lowest wear coefficients as well as the lowest compressive residual stress within studied multilayers.  相似文献   

19.
Pd2Si的生成对Pd/Si多层膜衍射性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
本文研究了Pd2Si的生成对周期性Pd/Si多层膜X射线衍射性能的影响。X射线衍射强度的测量数据表明Pd2Si的生成对长周期多层膜的衍射强度影响不大,但对短周期多层膜衍射强度的影响较大。在引入折射率修正后,我们不仅用单个峰的位置计算了多层膜的周期,而且还用了以两个峰的位置联立消去折射率修正的方法计算了多层膜的周期,前者的误差大于后者。模拟计算的结果说明:均匀Pd2Si层的生成不足以解释Pd/Si多层膜衍射强度随退火温度的变化,界面的平整化或粗糙化是影响衍射强度的另一个要素。 关键词:  相似文献   

20.
Ti-Al coatings with ∼14.7, 18.1, 25.2 and 29.7 at.% Al contents were fabricated on pure Ti substrate by laser cladding. The laser cladding Ti-Al coatings were analyzed with X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS). It was found that with the increase of Al content, the diffraction peaks shifted gradually to higher 2θ values. The laser cladding Ti-Al coatings with 14.7 and 18.1 at.% Al were composed of α-Ti and α2-Ti3Al phases, while those with 25.2 and 29.7 at.% Al were composed of α2-Ti3Al phase. With the increase of Al content, the cross-sectional hardness increased, while the fracture toughness decreased. For the laser cladding Ti-Al coatings, when the Al content was ≤18.1 at.%, the wear mechanism was adhesive wear and abrasive wear; while when the Al content ≥25.2 at.%, the wear mechanism was adhesive wear, abrasive wear and microfracture. With the increase of Al content, the wear rate of laser cladding Ti-Al coatings decreased under 1 N normal load, while the wear rate firstly decreased and then increased under a normal load of 3 N. Due to its optimized combination of high hardness and high fracture toughness, the laser cladding Ti-Al coating with 18.1 at.% Al showed the best anti-wear properties at higher normal load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号