首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Crystallization in ultrathin Poly(Ethylene Oxide)/Poly(Methyl Methacrylate) (PEO/PMMA) blend films with thickness of ca. 10 nm was investigated by means of microscopic and in situ spectroscopic methods. It was revealed that the blend films undergo a phase ordering in a humid atmosphere before or during crystallization, with PEO de-mixing with PMMA and segregating to the free film interface on the PMMA layer. The de-mixed PEO chains crystallize into a fractal-like morphology by a diffusion-limited process, and the crystal growth is 1-dimensional with Avrami exponent n ≈ 1, resulting in flat-on crystal lamellae with the PEO chains oriented normal to the film plane.  相似文献   

2.
Crystallization of poly(ethylene oxide) (PEO) in thin films was studied using hot-stage polarized optical microscopy. Isothermal linear crystal growth rates were measured for various film thicknesses at various degrees of undercooling. At a given crystallization temperature, the linear crystal growth rate decreased exponentially with decreasing film thickness below a film thickness of 80 nm. Films showed similar spherulitic morphology down to a film thickness of 30 nm. Control experiments on hydrophilic and hydrophobic surfaces showed that surface chemistry affects stability of the polymer films and causes a competition between crystallization and dewetting.  相似文献   

3.
The crystallization patterns of ultrathin poly(ethylene oxide)/poly(methyl methacrylate)(PEO/PMMA) blend films crystallized at different undercooling were investigated by atomic force microscopy. Dendrite pattern formed as a result of crystalline anisotropy at low undercooling and evolved into seaweed pattern with increasing undercooling. Although the configuration of macromolecules is far different from that of simple small molecules, the crystallization pattern transition in ultrathin polymer films can be interpreted by the classical morphology diagram developed on the basis of metals and simple molecules, indicating that polymer chains can be considered as simple dynamical units in a quasi‐two‐dimensional confined state.  相似文献   

4.
In this work, isothermal and nonisothermal crystallization kinetics of poly(ethylene oxide) (PEO) and PEO in PEO/fatty acid (lauric and stearic acid) blends, that are used as thermal energy storage materials, was studied using differential scanning calorimetry (DSC) data. The Avrami equation was adopted to describe isothermal crystallization of PEO and nonisothermal crystallization was analyzed using both the modified Avrami approach and Ozawa method. Avrami exponent (n) for PEO crystallization was in the range 1.08–1.32 (10–90% relative crystallinity), despite of spherulites formation, while for PEO in PEO/fatty acid blends n was between 1.61 and 2.13. Hoffman and Lauritzen theory was applied to calculate the activation energy of nucleation (Kg) – the lowest value of Kg was observed for pure PEO, despite of heterogeneous nucleation of fatty acid crystals in PEO/fatty acid blends. For nonisothermal crystallization of PEO in PEO/lauric acid (1:1 w/w) and PEO/stearic acid (1:3 w/w) blends, secondary crystallization occurred and values of the Avrami exponent were 2.8 and 2.0, respectively. The crystallization activation energies of PEO were determined to be ?260 kJ/mol for pure PEO, ?538 kJ/mol for PEO/lauric acid blend, and ?387 kJ/mol for PEO/stearic acid blend for isothermal crystallization and ?135,6 kJ/mol, ?114,5 kJ/mol, and ?92,8 kJ/mol, respectively, for nonisothermal crystallization.  相似文献   

5.
Solvent-induced crystallization and dewetting behaviors of polystyrene-b-poly (ethylene oxide)-b-polystyrene (PS-b-PEO-b-PS) block copolymer films deposited on three different substrates, silicon, mica, and carbon-coated mica have been studied by atomic force microscope (AFM). When the common solvent dichloromethane was used for annealing, the films on all three of the substrates exhibited dewetting behavior; the dendritic crystallization patterns were found in the dewetted regions for the films on silicon and mica substrates, while for the films on carbon-coated mica, no crystallization pattern appeared. According to the observation of the crystallization patterns formed in the films with different initial thicknesses, it is shown that the width of the dendritic branches decreases with the increase of film thickness and solvent annealing time. When the PS-selective solvent toluene was used for annealing, the dewetting process was absent, and the crystallization patterns were observed on the surface of the films on all three kinds of substrates.  相似文献   

6.
Solid polymer electrolytes (SPEs) contain amorphous and crystalline regions, each of which have unique contributions to the 13C NMR spectrum. Understanding and assigning the 13C NMR signals are vital to interpreting the NMR data collected for each phase. The 13C CPMAS solid-state NMR spectrum of poly(ethylene oxide), a common polymer electrolyte host material, has superimposed broad and narrow components. Previously, the narrow component has been assigned to the amorphous region and the broad component to the crystalline PEO fraction. These assignments for pure PEO have been applied to various PEO:salt systems. Using lithium triflate salt dissolved in PEO, we revisit the spectral assignments and discover that the narrow component is due to crystalline PEO:LiTf component, which is reversed from the previous pure PEO assignment. This paradigm shift is based on data collected from a 100% crystalline PEO:LiTf with a 3:1 oxygen:lithium ratio sample, which exhibited only the narrow peak. For dilute electrolytes, such as 20:1 PEO:LiTf, the 13C CPMAS spectra contain the narrow peak superimposed on a broad peak as seen with pure PEO. As dilute electrolytes are heterogeneous with crystalline and amorphous regions of both pure PEO and PEO:LiTf complex, peak assignments for pure PEO and PEO:LiTf are important. Thus, we reexamine the previous assignment for pure PEO using samples of pure powdered PEO, thermally treated pure powdered PEO, and a thin film PEO cast from an acetonitrile solution. With these different samples, we observed the growth of the narrow peak under conditions that favor crystallization. Therefore, for pure PEO, we have reassigned the narrow peak to the crystalline region and the broad peak to the amorphous region. In light of our observations, previous NMR studies of pure PEO and PEO SPEs should be reinvestigated. We also use rotational echo double resonance (REDOR) to study the 20:1 PEO:LiTf created from 2 and 100 kDa PEO. We find that the lithium environment is similar in the respective microcrystalline domains. However, the 100 kDa samples have a larger fraction of pure crystalline PEO.  相似文献   

7.
Atomic force microscopy (AFM) is used to measure the surface roughness of crystalline Pt thin films as a function of film thickness and growth rate. Our films were electrodeposited on Au/Cr/glass substrates, under galvanostatic control (constant current density), from a single electrolyte containing Pt4+ ions. Crystalline structure of the films was confirmed by X-ray diffraction (XRD) technique. The effect of growth rate (deposition current density) and film thickness (deposition time) on the kinetic roughening of the films were studied using AFM and roughness calculation. The data is consistent with a rather complex behaviour known as “anomalous scaling” where both local and large scale roughnesses show power law dependence on the film thickness.  相似文献   

8.
Reiter [1] has recently reported a situation in which the dewetting of quasi-solid films is linked to plastic deformation - rather than viscous flow - resulting from capillary forces. Herein we propose that, in thin films of some glassy polymers - especially poly(methyl methacrylate) (PMMA) - prepared by spin-casting from solvent, structural relaxation might impart sufficient stress to cause plastic deformation. We find that PMMA films decrease in thickness by several percent, which is sufficient to create significant stress in those cases in which the film is attached to a rigid substrate. The floating technique, which can take tens of minutes, might allow most of the structural relaxation to occur prior to dewetting experiments.Received: 1 August 2003PACS: 65.40.De Thermal expansion; thermomechanical effects - 82.60.Lf Thermodynamics of solutions - 61.41. + e Polymers, elastomers, and plasticsM. Sferrazza: Current address: Département de Physique, Université Libre de Bruxelles, Boulevard du Triomphe, CP223, 1050 Bruxelles, Belgium  相似文献   

9.
The effect of single and mixed solvent on the crystallization behavior of the PVDF/PMMA blend from solutions was investigated. The films cast from the good solvent N,N-dimethylformamide (DMF) dominantly yielded the β-phase crystal with the highest crystallinity of PVDF. Those deposited from the methyl ethyl ketone (MEK) and tetrahydrofuran (THF) exhibited a mixture of α- and some extra β-phase crystals and presented the low crystallinity of PVDF. The crystallization behavior and morphology of the films cast from the mixed solvent (THF/DMF) revealed an enormous dependence on the DMF content. The increased DMF content in the mixed solvent enhanced the interactions between polymers and solvents, and favored the β-crystal of PVDF formation but hindered the α-phase of PVDF formation. Thus, the total crystallinity of PVDF in the blend film was decreased with the DMF content increasing, because of the decreased α-phase of PVDF. In addition, the morphological feature revealed that the voids between the PVDF spherulites were eliminated remarkably by blending with PMMA. The average size of the connected spherulite on top surface of the film can grow into larger as DMF content increased.  相似文献   

10.
Blends of poly (ethylene oxide)‐b‐polystyrene (PEO‐b‐PS) diblock copolymer and poly (2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) homopolymer were obtained by solution blending, and the morphologies of PEO dispersed nanoparticles in PPO/PS matrix were observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The isothermal crystallization kinetics was studied using differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Nonisothermal crystallization kinetics was studied using DSC. The results showed that PEO segments were easier to crystallize in the blend than in the copolymer probably due to the interfaces of PPO acting as nucleation sites to promote the crystallization of PEO. The crystallization of PEO blocks destroyed the pre‐existing microdomain structure even though the glass transition temperature of the matrix was much higher than the crystallization temperature.  相似文献   

11.
徐苗  彭俊彪 《物理学报》2010,59(3):2131-2136
用渡越时间法(TOF)分别测试了采用旋涂和滴涂方法制备的poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4- phenylenevinylene](MEH-PPV)薄膜的空穴迁移率,用原子力显微镜对这两种方法制备的薄膜表面形貌进行了研究.结果表明使用滴涂法有利于聚合物形成有序薄膜结构,能有效提高空穴迁移率.用滴涂法制备的基于MEH-PPV:phenyl C61- butyric acid methyl ester(PCBM)共混薄膜的太阳电池,对比用旋涂法制备的太阳电池,其能量 关键词: 太阳电池 聚合物 迁移率  相似文献   

12.
The nanocomposite films of a functionalized graphene sheet (FGS) and poly(ethylene oxide) (PEO) were cast from the physical blend of an aqueous FGS dispersion assisted by sodium dodecyl sulfate and an aqueous PEO solution. The thermal properties observed by differential scanning calorimetry suggested that FGS had a nucleating effect on the PEO crystallization. However, we found FGS actually hindered the growth of PEO crystals. The dynamic mechanical properties indicated that FGS effectively reinforced the matrix PEO. The FGS also efficiently improved the electric conductivity of PEO. With the addition of 2 parts of FGS per 100 parts of PEO, the conductivity was increased by more than 103-fold from that of pristine PEO.  相似文献   

13.
The effects of addition of non-degradable polymers on the rate of enzymatic erosion for the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] have been studied at 37 °C and pH 7.4 in the aqueous solution of an extracellular PHB depolymerase from Alcaligenes facalis. Polystyrene (PS) or poly(methyl methacrylate) (PMMA) was selected as a minor component (5 wt%) in a blend because of their non-enzymatic activity. Enzymatic degradation behaviors of the “as-cast” and “annealed” blend films were investigated using atomic force microscopy and weight loss measurements. Although the spherulites of P(3HB-co-3HV) cover all blend film surfaces throughout, the retardation of biodegradation in the P(3HB-co-3HV)/PS blend films was detected from morphological observation and weight loss measurement for both as-cast and annealed blend films while there was little difference between the P(3HB-co-3HV)/PMMA blend and pure P(3HB-co-3HV). Since the enzymatic degradation of P(3HB-co-3HV) initially occurs by a surface erosion process, these degradation behaviors were explained by the surface structure of blend films measured by X-ray photoelectron spectroscopy. The surface of P(3HB-co-3HV)/PS blend films revealed an excess of PS, whereas the surface of P(3HB-co-3HV)/PMMA blend films was nearly covered by P(3HB-co-3HV). It was concluded, therefore, that the PS, which exists within P(3HB-co-3HV) spherulites at surface acts as a retardant of enzymatic attack to the surface of the blend film.  相似文献   

14.
The repulsive force originating from steric hindrance of polymers in aqueous solvent was investigated using scanning probe microscopy (SPM). The contact angle (CA) of ammonium poly(acrylic acid) (PAA) solution on the Si surface was measured to estimate the state of the Si substrate. Results of CA measurement show that the Si surface was fully covered with PAA at 0.1 mass% in aqueous solution. The interaction force between the Si tip and the wafer was estimated using the SPM force curve mode. The force curve measured in the ion-exchanged purified water showed the typical relation predicted by Derjaguin-Landau-Verway-Overbeek (DLVO) theory. However, the force curve shape in the 0.1 mass% PAA solution was significantly different. Only a repulsive force was observed at less than about 4 nm of separation distance between the Si wafer and cantilever tip. This distance originated from the steric repulsions of PAA adsorbed onto the Si wafer and cantilever tip.  相似文献   

15.
The effect of blend composition on crystallization morphology and behavior of a crystalline/crystalline blend, poly(l-lactic acid) (PLLA)/poly(ethylene oxide) (PEO), during slow, non-isothermal crystallization was studied by polarized light microscopy (PLM) connected with a hot-stage and differential scanning calorimetry (DSC). The results showed that all of the PLLA/PEO blends produced spherulites which gradually became bigger and looser, as well as coarser, with the increment of the PEO content, indicating that the PEO crystals was resided in the interlamellar or interfibrillar (between clusters of commonly oriented lamellae) regions of the PLLA spherulites. In the (25/75) and (10/90) blends, the nucleation and growth processes of the PEO spherulites could be clearly observed in the pre-existing PLLA spherulites. The onset crystallization temperature and the melting point of one component decreased with increasing the content of the other one owing to the good miscibility of the two components in the non-crystalline state and the interaction between their macromolecules, indicating that the crystallization of each component was influenced by the other one.  相似文献   

16.
The effect of shearing on crystallization behavior of a crystalline/crystalline blend, polyoxymethylene [POM]/poly(ethylene oxide) [PEO], was investigated using polarized light microscopy connected with a CSS450 shearing hot-stage, scanning electron microscopy, differential scanning calorimetry [DSC], and x-ray diffraction [XRD]. The experimental results indicated that the shearing made POM and PEO disperse more evenly and increased the inclusion and entanglement effects between the molecular chains of POM and PEO and therefore enhanced the influence of PEO on the crystallization of POM. As a result, the blend sheared at a shear rate of 20 s?1 for 10 min at 160°C formed shish–kebab crystals and produced more interlamellar structures compared with the formation of perforated spherulites in the unsheared blend. Moreover, a more obvious shoulder melting peak of POM appeared in the DSC heating trace and a new diffraction peak occurred at 2θ = 31.7° in the XRD pattern for the sheared POM/PEO [50/50] blend.  相似文献   

17.
Magnetic transitions in ultrathin Fe films on the Cu(1 0 0) surface have been studied with spin polarized low energy electron microscopy. By monitoring averaged image intensity oscillations and the evolution of magnetization and magnetic domain structure simultaneously and continuously during growth, magnetism and film thickness are correlated with unprecedented precision. The thickness range over which ferromagnetism exists in films grown at room temperature generally increases as the deposition rate is decreased. This trend is attributed to the influence of residual hydrogen. The two-dimensional Ising model with finite size scaling of the Curie temperature accurately describes the evolution of magnetization with increasing film thickness.  相似文献   

18.
19.
叶学民  沈雷  李春曦 《计算物理》2013,30(3):361-370
对存在壁面滑移的含非溶性表面活性剂薄液膜在固体表面的去湿过程,采用PDECOL程序对描述其演化过程的液膜厚度和表面活性剂浓度方程组进行数值求解.基于液膜表面扰动波形的变化,分析各参数对去湿特性及液膜稳定性的影响规律.研究指出:Marangoni数M较小时其效应使液膜失稳区缩短,而M较大时液膜失稳区间无限延伸,稳定性降低;毛细力数减小使液膜失稳区间缩短,减至一定程度后可有效抑制去湿现象的发生;滑移效应对演化过程的影响与M有关,M较小时滑移使液膜失稳区间缩减,使扰动增长率增大,M较大时这一影响并不显著;随平衡液膜厚度增大,液膜表面的扰动程度减小,但扰动区间显著增大.相对于外源性表面活性剂而言,内源性情形的失稳区间更小,液膜稳定性更强.  相似文献   

20.
聚合物共混物中链段的慢取向运动与其玻璃化转变行为和宏观力学性质密切关联,而基于化学位移各向异性重聚的~(13)C CODEX(centerband-only detection of exchange)固体核磁共振(SSNMR)技术能够有效表征共混物中链段的慢取向运动.该文利用~(13)C CODEX NMR技术详细研究了相容性聚合物共混物聚乙烯基苯酚/聚氧乙烯(PVPh/PEO)中的刚性组分PVPh在较宽温度范围内的慢取向运动特性与玻璃化转变过程的关联.研究表明,在玻璃化转变起始温度以下,PVPh主链的分子运动被冻结,而侧基存在b-松弛的慢取向运动;在玻璃化转变起始温度附近,PVPh主链具有明显的慢取向运动,而且主链和侧基是一种协同的分子运动.该文利用NMR技术揭示了共混物中的玻璃化转变起止温度分别对应于高分子主链慢取向运动CODEX信号的开始和极大值处的温度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号