首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc oxide (ZnO) thin films were deposited on microscope glass substrates by sol-gel spin coating method. Zinc acetate (ZnAc) dehydrate was used as the starting salt material source. A homogeneous and stable solution was prepared by dissolving ZnAc in the solution of monoethanolamine (MEA). ZnO thin films were obtained after preheating the spin coated thin films at 250 °C for 5 min after each coating. The films, after the deposition of the eighth layer, were annealed in air at temperatures of 300 °C, 400 °C and 500 °C for 1 h. The effect of thermal annealing in air on the physical properties of the sol-gel derived ZnO thin films are studied. The powder and its thin film were characterized by X-ray diffractometer (XRD) method. XRD analysis revealed that the annealed ZnO thin films consist of single phase ZnO with wurtzite structure (JCPDS 36-1451) and show the c-axis grain orientation. Increasing annealing temperature increased the c-axis orientation and the crystallite size of the film. The annealed films are highly transparent with average transmission exceeding 80% in the visible range (400-700 nm). The measured optical band gap values of the ZnO thin films were between 3.26 eV and 3.28 eV, which were in the range of band gap values of intrinsic ZnO (3.2-3.3 eV). SEM analysis of annealed thin films has shown a completely different surface morphology behavior.  相似文献   

2.
Pure and Cu-doped ZnO (ZnO:Cu) thin films were deposited on glass substrates using radio frequency (RF) reactive magnetron sputtering. The effect of substrate temperature on the crystallization behavior and optical properties of the ZnO:Cu films have been studied. The crystal structures, surface morphology and optical properties of the films were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer, respectively. The results indicated that ZnO films showed a stronger preferred orientation toward the c-axis and a more uniform grain size after Cu-doping. As for ZnO:Cu films, the full width at half maxima (FWHM) of (0 0 2) diffraction peaks decreased first and then increased, reaching a minimum of about 0.42° at 350 °C and the compressive stress of ZnO:Cu decreased gradually with the increase of substrate temperature. The photoluminescence (PL) spectra measured at room temperature revealed two blue and two green emissions. Intense blue-green luminescence was obtained from the sample deposited at higher substrate temperature. Finally, we discussed the influence of annealing temperature on the structural and optical properties of ZnO:Cu films. The quality of ZnO:Cu film was markedly improved and the intensity of blue peak (∼485 nm) and green peak (∼527 nm) increased noticeably after annealing. The origin of these emissions was discussed.  相似文献   

3.
In this study, ZnO thin films were fabricated using the rf magnetron sputtering method and their piezoelectrical and optical characteristics were investigated for various substrate temperatures. The ZnO thin film has the largest crystallization orientation for the (0 0 2) peak and the smallest FWHM value of 0.56° at a substrate temperature of 200 °C. The surface morphology shows a relatively dense surface structure at 200 °C compared to the other substrate temperatures. The surface roughness shows the smallest of 1.6 nm at a substrate temperature of 200 °C. The piezoelectric constant of the ZnO thin film measured using the pneumatic loading method (PLM) has a maximum value of 11.9 pC/N at a substrate temperature of 200 °C. The transmittance of the ZnO thin film measured using spectrophotometry with various substrate temperatures ranged from 75 to 93% in the visible light region. By fitting the refractive index from the transmittance to the Sellmeir dispersion relation, we can predict the refractive index of the ZnO thin film according to the wavelength. In the visible light range, the refraction index of the ZnO thin film deposited at a substrate temperature of 200 °C is the range of 1.88-2.08.  相似文献   

4.
Wurtzite zinc oxides films (ZnO) were deposited on silicon (0 0 1) and corning glass substrates using the pulsed laser deposition technique. The laser fluence, target-substrate distance, substrate temperature of 300 °C were fixed while varying oxygen pressures from 2 to 500 Pa were used. It is observed that the structural properties of ZnO films depend strongly on the oxygen pressure and the substrate nature. The film crystallinity improves with decreasing oxygen pressure. At high oxygen pressure, the films are randomly oriented, whereas, at low oxygen pressures they are well oriented along [0 0 1] axis for Si substrates and along [1 0 3] axis for glass substrates. A honeycomb structure is obtained at low oxygen pressures, whereas microcrystalline structures were obtained at high oxygen pressures. The effect of oxygen pressure on film transparency, band gap Eg and Urbach energies was investigated.  相似文献   

5.
ZnO thin films were fabricated using zinc chloride and zinc acetate precursors by the spray pyrolysis technique on FTO coated glass substrates. The ZnO films were grown in different deposition temperature ranges varying from 400 to 550 °C. Influences of substrate temperature and zinc precursors on crystal structure, morphology and optical property of the ZnO thin films were investigated. XRD patterns of the films deposited using chloride precursor indicate that (1 0 1) is dominant at low temperatures, while those deposited using acetate precursor show that (1 0 1) is dominant at high temperatures. SEM images show that deposition temperature and type of precursor have a strong effect on the surface morphology. Optical measurements show that ZnO films are obviously influenced by the substrate temperatures and different types of precursor solutions. It is observed that as temperature increases, transmittance decreases for ZnO films obtained using zinc chloride precursor, but the optical transmittance of ZnO films obtained using zinc acetate precursor increases as temperature increases.  相似文献   

6.
A simple growth route towards ZnO thin films and nanorods   总被引:1,自引:0,他引:1  
Highly orientated ZnO thin films and the self-organized ZnO nanorods can be easily prepared by a simple chemical vapor deposition method using zinc acetate as a source material at the growth temperature of 180 and 320 °C, respectively. The ZnO thin films deposited on Si (100) substrate have good crystallite quality with the thickness of 490 nm after annealing in oxygen at 800 °C. The ZnO nanorods grown along the [0001] direction have average diameter of 40 nm with length up to 700 nm. The growth mechanism for ZnO nanorods can be explained by a vapor-solid (VS) mechanism. Photoluminescence (PL) properties of ZnO thin films and self-organized nanorods were investigated. The luminescence mechanism for green band emission was attributed to oxygen vacancies and the surface states related to oxygen vacancy played a significant role in PL spectra of ZnO nanorods.  相似文献   

7.
Zn1−xCoxO thin films with c-axis preferred orientation were deposited on sapphire (0 0 0 1) by pulsed laser deposition (PLD) technique at different substrate temperatures in an oxygen-deficient ambient. The effect of substrate temperature on the microstructure, morphology and the optical properties of the Zn1−xCoxO thin films was studied by means of X-ray diffraction (XRD), atomic force microscopy (AFM), UV-visible-NIR spectrophotometer, fluorescence spectrophotometer. The results showed that the crystallization of the films was promoted as substrate temperature rose. The structure of the samples was not distorted by the Co incorporating into ZnO lattice. The surface roughness of all samples decreased as substrate temperature increased. The Co concentration in the film was higher than in the target. Emission peak near band edge emission of ZnO from the PL spectra of the all samples was quenched because the dopant complexes acted as non-radiative centers. While three emission bands located at 409 nm (3.03 eV), 496 nm (2.5 eV) and 513 nm (2.4 eV) were, respectively, observed from the PL spectra of the four samples. The three emission bands were in relation to Zn interstitials, Zn vacancies and the complex of VO and Zni (VOZni). The quantity of the Zn interstitials maintained invariable basically, while the quantity of the VOZni slightly decreased as substrate temperature increased.  相似文献   

8.
The effect of different annealing methods on the sheet resistance of indium tin oxide (ITO) on polyimide (PI) substrate has been investigated. ITO thin films were prepared by RF magnetron sputtering in pure Ar gas and electro-annealing, this was carried out in the flow of an electric current at several temperatures between 100 and 180 °C in air. Electro- and thermal annealing were compared in order to confirm differences between the electrical, optical and microstructural properties of the ITO thin films. As electro-annealing induced the predominant growth of crystallites of ITO thin films along (4 0 0) plane, the sheet resistance of ITO films that were electro-annealed for 2 mA at 180 °C considerably decreased from 50 to 28 Ω/cm2.  相似文献   

9.
Hydrogenated-carbon nitride (CNx:H) films were synthesized on silicon substrate in a large quantity by the pyrolysis of ethylenediamine in a temperature range of 700-950 °C. The influence of temperature on the morphology, structure, adhesion to substrate, and friction and wear behavior of CNx:H films was investigated. It has been found that CNx:H films obtained at 700 °C and 800 °C are amorphous, and those prepared at 900 °C and 950 °C consist of carbon nitride nanocrystal. Besides, CNx:H film sample obtained at 700 °C has the maximum N content of 9.1 at.% but the poorest adhesion to Si substrate, while the one prepared at 900 °C has the lower N content and the highest adhesion to substrate. As a result, nanocrystalline CNx:H (nc-CNx:H) film synthesized at 900 °C possesses the best wear resistance when slides against stainless steel counterpart. N atom is incorporated into the graphitic network in three different bonding forms, and their relative content is closely related to temperature, corresponding to different adhesion as well as friction and wear behavior of the films obtained at different temperatures. Furthermore, the friction coefficient and antiwear life of as-deposited CNx:H films vary with varying deposition temperature and thickness, and the film with thickness of 1.3 μm, obtained at 900 °C, has the longest antiwear life of over 180,000 s.  相似文献   

10.
ZnO thin films with different thickness (the sputtering time of ZnO buffer layers was 10 min, 15 min, 20 min, and 25 min, respectively) were first prepared on Si substrates using radio frequency magnetron sputtering system and then the samples were annealed at 900 °C in oxygen ambient. Subsequently, a GaN epilayer about 500 nm thick was deposited on ZnO buffer layer. The GaN/ZnO films were annealed in NH3 ambient at 950 °C. X-ray diffraction (XRD), atom force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) were used to analyze the structure, morphology, composition and optical properties of GaN films. The results show that their properties are investigated particularly as a function of the sputtering time of ZnO layers. For the better growth of GaN films, the optimal sputtering time is 15 min.  相似文献   

11.
Transparent conductive Co-doped ZnO thin films were deposited by ultrasonic spray technique. Conditions of preparation have been optimized to get good quality. A set of cobalt (Co)-doped ZnO (between 0 and 3 wt%) thin films were grown on glass substrate at 350 °C. The thin films were annealed at 500 °C for improvement of the physical properties. Nanocrystalline films with hexagonal wurtzite structure and a strong (0 0 2) preferred orientation were obtained. The maximum value of grain size G = 63.99 nm is attained with undoped ZnO film. The optical transmissions spectra showed that both the undoped and doped ZnO films have transparency within the visible wavelength region. The band gap energy decreased after doping from 3.367 to 3.319 eV when Co concentration increased from 0 to 2 wt% with slight increase of electrical conductivity of the films from 7.71 to 8.33 (Ω cm)−1. The best estimated structure, optical and electrical results are achieved in Co-doped ZnO film with 2 wt%.  相似文献   

12.
ZnO thin films have been grown on a-plane (1,1,−2,0) sapphire substrates by metalorganic vapor phase epitaxy (MOVPE) at low substrate temperature of 350 °C. It is showed that the crystal and electrical quality of the thin films was improved by using a ZnO buffer layer. The photoluminescence (PL) measurements indicate that the ZnO thin films grown at such a low substrate temperature have a strong UV emission.  相似文献   

13.
Al-doped ZnO (ZnO:Al) thin films with different Al contents were deposited on Si substrates using the radio frequency reactive magnetron sputtering technique. X-ray diffraction (XRD) measurements showed that the crystallinity of the films was promoted by appropriate Al content (0.75 wt.%). Then the ZnO:Al film with Al content of 0.75 wt.% was annealed in vacuum at different temperatures. XRD patterns revealed that the residual compressive stress decreased at higher annealing temperatures. While the surface roughness of the ZnO:Al film annealed at 300 °C became smoother, those of the ZnO:Al films annealed at 600 and 750 °C became rougher. The photoluminescence (PL) measurements at room temperature revealed a violet, two blue and a green emission. The origin of these emissions was discussed and the mechanism of violet and blue emission of ZnO:Al thin films were suggested. We concluded that the defect centers are mainly ascribed to antisite oxygen and interstitial Zn in annealed (in vacuum) ZnO:Al films.  相似文献   

14.
The ZnO films were deposited on c-plane sapphire, Si (0 0 1) and MgAl2O4 (1 1 1) substrates in pure Ar ambient at different substrate temperatures ranging from 400 to 750 °C by radio frequency magnetron sputtering. X-ray diffraction, photoluminescence and Hall measurements were used to evaluate the growth temperature and the substrate effects on the properties of ZnO films. The results show that the crystalline quality of the ZnO films improves with increasing the temperature up to 600 °C, the crystallinity of the films is degraded as the growth temperature increasing further, and the ZnO film with the best crystalline quality is obtained on sapphire at 600 °C. The intensity of the photoluminescence and the electrical properties strongly depend on the crystalline quality of the ZnO films. The ZnO films with the better crystallinity have the stronger ultraviolet emission, the higher mobility and the lower residual carrier concentration. The effects of crystallinity on light emission and electrical properties, and the possible origin of the n-type conductivity of the undoped ZnO films are also discussed.  相似文献   

15.
An attempt has been made to realize p-ZnO by directly doping (codoping) GaP into ZnO thin films. GaP codoped ZnO thin films of different concentrations (1, 2 and 4 mol%) have been grown by RF magnetron sputtering. The grown films on sapphire substrate have been characterized by X-ray diffraction (XRD), Hall measurement, Photoluminescence (PL) and Energy dispersive spectroscopy (EDS) to validate the p-type conduction. XRD result shows that all the films have been preferentially oriented along (0 0 2) orientation. The decrease of full-width at half maximum (FWHM) with increase in GaP doping depicts the decrease in native donor defects. Hall measurement shows that among the three films, 2 and 4 mol% GaP doped ZnO shows p-conductivity due to the sufficient amount of phosphorous incorporation. It has been found that low resistivity (2.17 Ωcm) and high hole concentration (1.8×1018 cm−3) for 2% GaP codoped ZnO films due to best codoping. The red shift in near-band-edge (NBE) emission and donar-acceptor-pair (DAP) and neutral acceptor bound recombination (A°X) observed by room temperature and low temperature (10 K) PL, respectively, well acknowledged the formation of p-ZnO. The incorporated phosphorous in the film has been also confirmed by EDS analysis.  相似文献   

16.
Zinc oxide (ZnO) thin films were deposited on unheated silicon substrates via radio frequency (RF) magnetron sputtering, and the post-deposition annealing of the ZnO thin films was performed at 400 °C, 600 °C, 800 °C, and 1000 °C. The characteristics of the thin films were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The films were then used to fabricate surface acoustic wave (SAW) resonators. The effects of post-annealing on the SAW devices are discussed in this work. Resulting in the 600 °C is determined as optimal annealing temperature for SAW devices. At 400 °C, the microvoids exit between the grains yield large root mean square (RMS) surface roughness and higher insertion losses in SAW devices. The highest RMS surface roughness, crack and residual stress cause a reduction of surface velocity (about 40 m/s) and increase dramatically insertion loss at 1000 °C. The SAW devices response becomes very weak at this temperature, the electromechanical coupling coefficient (k2) of ZnO film decrease from 3.8% at 600 °C to 1.49% at 1000 °C.  相似文献   

17.
Extensive studies on the relationship between a copper thin film and its polyimide substrate show that the adhesion strength is very weak. In this work, we show how to reduce Cu film resistivity and improve the adhesion strength between Cu and polyimide. After nitrogen and oxygen plasma treatment, polyimide substrates can substantially improve the resistivity and adhesion strength deposited Cu. It is found that the lowest resistivity is 4.22 μΩ cm and the maximum adhesion strength is 72.23 MPa for a polymide substrate treated in oxygen plasma for 5 min.  相似文献   

18.
ZnO:Al thin films with c-axis preferred orientation were deposited on glass and Si substrates using RF magnetron sputtering technique. The effect of substrate on the structural and optical properties of ZnO:Al films were investigated. The results showed a strong blue peak from glass-substrate ZnO:Al film whose intensity became weak when deposited on Si substrate. However, the full width at half maxima (FWHM) of the Si-substrate ZnO:Al (0 0 2) peaks decreased evidently and the grain size increased. Finally, we discussed the influence of annealing temperature on the structural and optical properties of Si-substrate ZnO:Al films. After annealing, the crystal quality of Si-substrate ZnO:Al thin films was markedly improved and the intensity of blue peak (∼445 nm) increased noticeably. This observation may indicate that the visible emission properties of the ZnO:Al films are dependent more on the film crystallinity than on the film stoichiometry.  相似文献   

19.
The effects of O2 plasma pretreatment on the properties of Ga-doped ZnO films on PET substrate were studied. Ga-doped ZnO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion of PET substrate, O2 plasma pretreatment process was used prior to GZO sputtering. With increasing O2 plasma treatment time, the contact angle decreases and the RMS surface roughness increases significantly. The transmittance of GZO films on PET substrate in a wavelength of 550 nm was 70-84%. With appropriate O2 plasma treatment, the resistivity of GZO films on PET substrate was 3.4 × 10−3 Ω cm.  相似文献   

20.
Nanostructured ZnO thin films were deposited on Si(1 1 1) and quartz substrate by sol-gel method. The thin films were annealed at 673 K, 873 K, and 1073 K for 60 min. Microstructure, surface topography, and water contact angle of the thin films have been measured by X-ray diffractometer, atomic force microscopy, and water contact angle apparatus. XRD results showed that the ZnO thin films are polycrystalline with hexagonal wurtzite structure. AFM studies revealed that rms roughness changes from 2.3 nm to 7.4 nm and the grain size grow up continuously with increasing annealing temperature. Wettability results indicated that hydrophobicity of the un-irradiated ZnO thin films enhances with annealing temperature increase. The hydrophobic ZnO surfaces could be reversibly switched to hydrophilic by alternation of UV illumination and dark storage (thermal treatment). By studying the magnitude and the contact angle reduction rate of the light-induced process, the contribution of surface roughness is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号