首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
辛俊丽  沈俊霞 《物理学报》2015,64(24):240302-240302
从量子-经典轨道和几何相两方面, 研究了二维旋转平移谐振子系统的量子-经典对应. 通过广义规范变换得到了Lissajous经典周期轨道和Hannay角. 另外, 使用含时规范变换解析推导了旋转平移谐振子系统Schrödinger方程的本征波函数和Berry相, 得出结论: 原规范中的非绝热Berry相是经典Hannay角的-n倍. 最后, 使用SU(2)自旋相干态叠加, 构造一稳态波函数, 其波函数的概率云很好地局域于经典轨道上, 满足几何相位和经典轨道同时对应.  相似文献   

2.
We propose an experimentally feasible scheme to achieve quantum computation based on nonadiabatic geometric phase shifts, in which a cyclic geometric phase is used to realize a set of universal quantum gates. Physical implementation of this set of gates is designed for Josephson junctions and for NMR systems. Interestingly, we find that the nonadiabatic phase shift may be independent of the operation time under appropriate controllable conditions. A remarkable feature of the present nonadiabatic geometric gates is that there is no intrinsic limitation on the operation time.  相似文献   

3.
We study the asymptotic dynamics of a driven spin-boson system where the environment is formed by a broadened localized mode. Upon exploiting an exact mapping, an equivalent formulation of the problem in terms of a quantum two-state system (qubit) coupled to a harmonic oscillator which is itself Ohmically damped, is found. We calculate the asymptotic population difference of the two states in two complementary parameter regimes. For weak damping and low temperature, a perturbative Floquet-Born-Markovian master equation for the qubit-oscillator system can be solved. We find multi-photon resonances corresponding to transitions in the coupled quantum system and calculate their line-shape analytically. In the complementary parameter regime of strong damping and/or high temperatures, non-perturbative real-time path integral techniques yield analytic results for the resonance line shape. In both regimes, we find very good agreement with exact results obtained from a numerical real-time path-integral approach. Finally, we show for the case of strong detuning between qubit and oscillator that the width of the n-photon resonance scales with the nth Bessel function of the driving strength in the weak-damping regime.  相似文献   

4.
Geometric phases are only dependent on evolution paths but independent of evolution details so that they possess some intrinsic noise-resilience features. Based on different geometric phases, various quantum gates have been proposed, such as nonadiabatic geometric gates based on nonadiabatic Abelian geometric phases and nonadiabatic holonomic gates based on nonadiabatic nonAbelian geometric phases. Up to now, nonadiabatic holonomic one-qubit gates have been experimentally demonstrated with superconducting transmons, where the three lowest levels are all utilized in operation. However, the second excited state of transmons has a relatively short coherence time, which results in a decreased fidelity of quantum gates. Here, we experimentally realize Abelian-geometric-phase-based nonadiabatic geometric one-qubit gates with a superconducting Xmon qubit. The realization is performed on the two lowest levels of an Xmon qubit and thus avoids the influence from the short coherence time of the second excited state. The experimental result indicates that the average fidelities of single-qubit gates can be up to 99.6% and 99.7% characterized by quantum process tomography and randomized benchmarking.  相似文献   

5.
We study the quantum dynamics of a two-level system interacting with a quantized harmonic oscillator in the deep strong coupling regime (DSC) of the Jaynes-Cummings model, that is, when the coupling strength g is comparable or larger than the oscillator frequency ω (g/ω?1). In this case, the rotating-wave approximation cannot be applied or treated perturbatively in general. We propose an intuitive and predictive physical frame to describe the DSC regime where photon number wave packets bounce back and forth along parity chains of the Hilbert space, while producing collapse and revivals of the initial population. We exemplify our physical frame with numerical and analytical considerations in the qubit population, photon statistics, and Wigner phase space.  相似文献   

6.
We implemented the superadiabatic population transfer within the nonadiabatic regime in a two-level superconducting qubit system. To realize the superadiabatic procedure, we added an additional term in the Hamiltonian, introducing an auxiliary counter-diabatic field to cancel the nonadiabatic contribution in the evolution. Based on the superadiabatic procedure, we further demonstrated quantum Phase and NOT gates. These operations, which possess both of the fast and robust features, are promising for quantum information processing.  相似文献   

7.
We have observed the coherent exchange of a single energy quantum between a flux qubit and a superconducting LC circuit acting as a quantum harmonic oscillator. The exchange of an energy quantum is known as the vacuum Rabi oscillation: the qubit is oscillating between the excited state and the ground state and the oscillator between the vacuum state and the first excited state. We also show that we can detect the state of the oscillator with the qubit and thereby obtained evidence of level quantization of the LC circuit. Our results support the idea of using oscillators as couplers of solid-state qubits.  相似文献   

8.
A matrix method is presented for treating the dynamical phases, adiabatic phases and nonadiabatic phases of quantum superposition states. It is effective for any parameter-varying Hamiltonian system. As two examples, the evolution of mass-varying harmonic oscillator and the evolution of coherent states under parameter-varying displaced operator have been studied, Some new phenomena are obtained in the first case and the possible producing of so-called Schr?dinger's cat state by geometric phases is pointed out. The quantum state useful for the quantum optical verification of Berry's phase is introduced.  相似文献   

9.
GEOMETRIC PHASES AND SCHR?DINGER''S CAT STATE   总被引:1,自引:0,他引:1       下载免费PDF全文
吴锦伟  郭光灿 《中国物理》1995,4(6):406-419
A matrix method is presented for treating the dynamical phases, adiabatic phases and nonadiabatic phases of quantum superposition states. It is effective for any parameter-varying Hamiltonian system. As two examples, the evolution of mass-varying harmonic oscillator and the evolution of coherent states under parameter-varying displaced operator have been studied, Some new phenomena are obtained in the first case and the possible producing of so-called Schr?dinger's cat state by geometric phases is pointed out. The quantum state useful for the quantum optical verification of Berry's phase is introduced.  相似文献   

10.
We study numerically the behavior of a qubit coupled to a quantum dissipative driven oscillator (resonator). Above a critical coupling strength the qubit rotations become synchronized with the oscillator phase. In the synchronized regime, at certain parameters, the qubit exhibits tunneling between two orientations with a macroscopic change of the number of photons in the resonator. The lifetimes in these metastable states can be enormously large. The synchronization leads to a drastic change of qubit radiation spectrum with the appearance of narrow lines corresponding to recently observed single artificial-atom lasing [O. Astafiev, Nature (London) 449, 588 (2007)].  相似文献   

11.
We have studied the dephasing of a superconducting flux qubit coupled to a dc-SQUID based oscillator. By varying the bias conditions of both circuits we were able to tune their effective coupling strength. This allowed us to measure the effect of such a controllable and well-characterized environment on the qubit coherence. We can quantitatively account for our data with a simple model in which thermal fluctuations of the photon number in the oscillator are the limiting factor. In particular, we observe a strong reduction of the dephasing rate whenever the coupling is tuned to zero. At the optimal point we find a large spin-echo decay time of .  相似文献   

12.
We calculate the oscillations of the dc conductance across a mesoscopic ring, simultaneously tuned by applied magnetic and electric fields orthogonal to the ring. The oscillations depend on the Aharonov-Bohm flux and of the spin-orbit coupling. They result from mixing of the dynamical phase, including the Zeeman spin splitting, and of geometric phases. By changing the applied fields, the geometric phase contribution to the conductance oscillations can be tuned from the adiabatic (Berry) to the nonadiabatic (Ahronov-Anandan) regime. To model a realistic device, we also include nonzero backscattering at the connection between ring and contacts, and a random phase for electron wave function, accounting for dephasing effects.  相似文献   

13.
Quantum gates, which are the essential building blocks of quantum computers, are very fragile. Thus, to realize robust quantum gates with high fidelity is the ultimate goal of quantum manipulation. Here, we propose a nonadiabatic geometric quantum computation scheme on superconducting circuits to engineer arbitrary quantum gates, which share both the robust merit of geometric phases and the capacity to combine with optimal control technique to further enhance the gate robustness. Specifically, in our proposal, arbitrary geometric single-qubit gates can be realized on a transmon qubit, by a resonant microwave field driving, with both the amplitude and phase of the driving being timedependent. Meanwhile, nontrivial two-qubit geometric gates can be implemented by two capacitively coupled transmon qubits, with one of the transmon qubits’ frequency being modulated to obtain effective resonant coupling between them. Therefore, our scheme provides a promising step towards fault-tolerant solid-state quantum computation.  相似文献   

14.
嵇英华  蔡十华  乐建新  王资生 《中国物理 B》2010,19(1):10311-010311
A scheme to perfectly preserve an initial qubit state in geometric quantum computation is proposed for a single-qubit geometric quantum gate in a nuclear magnetic resonance system. At first, by adjusting some magnetic field parameters, one can let the dynamic phase be proportional to the geometric phase. Then, by controlling the azimuthal angle in the initial state, we may realize a geometric quantum gate whose fidelity is equal to one under cyclic evolution. This means that the quantum information is no distortion in the process of geometric quantum computation.  相似文献   

15.
We experimentally and theoretically demonstrate the purity (polarization) control of qubits entangled with multiple spins, using induced dephasing in nuclear magnetic resonance setups to simulate repeated quantum measurements. We show that one may steer the qubit ensemble towards a quasiequilibrium state of a certain purity by choosing suitable time intervals between dephasing operations. These results demonstrate that repeated dephasing at intervals associated with the anti-Zeno regime leads to ensemble purification, whereas those associated with the Zeno regime lead to ensemble mixing.  相似文献   

16.
We study theoretically the geometric phase of a double-quantum-dot(DQD) system measured by a quantum point contact(QPC) in the pure dephasing and dissipative environments, respectively. The results show that in these two environments, the coupling strength between the quantum dots has an enhanced impact on the geometric phase during a quasiperiod. This is due to the fact that the expansion of the width of the tunneling channel connecting the two quantum dots accelerates the oscillations of the electron between the quantum dots and makes the length of the evolution path longer.In addition, there is a notable near-zero region in the geometric phase because the stronger coupling between the system and the QPC freezes the electron in one quantum dot and the solid angle enclosed by the evolution path is approximately zero,which is associated with the quantum Zeno effect. For the pure dephasing environment, the geometric phase is suppressed as the dephasing rate increases which is caused only by the phase damping of the system. In the dissipative environment,the geometric phase is reduced with the increase of the relaxation rate which results from both the energy dissipation and phase damping of the system. Our results are helpful for using the geometric phase to construct the fault-tolerant quantum devices based on quantum dot systems in quantum information.  相似文献   

17.
Holonomic quantum computation is a quantum computation strategy that promises some built-in noise-resilience features. Here, we propose a scheme for nonadiabatic holonomic quantum computation with nitrogen-vacancy center electron spins, which are characterized by fast quantum gates and long qubit coherence times. By varying the detuning, amplitudes, and phase difference of lasers applied to a nitrogen-vacancy center, one can directly realize an arbitrary single-qubit holonomic gate on the spin. Meanwhile, with the help of cavity-assisted interactions, a nontrivial two-qubit holonomic quantum gate can also be induced. The distinct merit of this scheme is that all the quantum gates are obtained via an all-optical geometric manipulation of the solid-state spins. Therefore, our scheme opens the possibility for robust quantum computation using solid-state spins in an all-optical way.  相似文献   

18.
Selective measurements of the states are studied for a single quantum system, viz, a Josephson qubit, by a nonlinear oscillator operating in the mesoscopic regime in which the number of quanta during measurements is varied from a few dozen to several hundreds. The quantum Monte Carlo method is used to simulate the dissipative dynamics of the qubit–oscillator system and the process of measurements of the qubit states from the change in the number of oscillator quanta. It is shown that for π-pulses in the recording of qubit states, discrimination of states is possible in single realizations (measurements), while statistical projective measurements can be made for the prepared superposition state.  相似文献   

19.
We present a general technique to implement products of many qubit operators communicating via a joint harmonic oscillator degree of freedom in a quantum computer. By conditional displacements and rotations we can implement Hamiltonians which are trigonometric functions of qubit operators. With such operators we can effectively implement higher order gates such as Toffoli gates and C(n)-NOT gates, and we show that the entire Grover search algorithm can be implemented in a direct way.  相似文献   

20.
Geometric phases are robust to local noises and the nonadiabatic ones can reduce the evolution time, thus nonadiabatic geometric gates have strong robustness and can approach high fidelity. However, the advantage of geometric phase has not been fully explored in previous investigations. Here,a scheme is proposed for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths. In the scheme, only geometric phase can be accumulated in a fast way, and thus it not only fully utilizes the local noise resistant property of geometric phase but also reduces the difficulty in experimental realization. Numerical results show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path. Furthermore, it proposes to construct universal quantum gate on superconducting circuits, with the fidelities of single-qubit gate and nontrivial two-qubit gate can achieve 99.97% and 99.87%, respectively. Therefore, these high-fidelity quantum gates are promising for large-scale fault-tolerant quantum computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号