首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This paper deals with a new form of nonlinear Raman spectroscopy called ‘ultrafast Raman loss spectroscopy (URLS)’. URLS is analogous to stimulated Raman spectroscopy (SRS) but is much more sensitive than SRS. The signals are background (noise) free unlike in coherent anti‐Stokes Raman spectroscopy (CARS) and it provides natural fluorescence rejection, which is a major problem in Raman spectroscopy. In addition, being a self‐phase matching process, the URLS experiment is much easier than CARS, which requires specific phase matching of the laser pulses. URLS is expected to be alternative if not competitive to CARS microscopy, which has become a popular technique in applications to materials, biology and medicine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
受激拉曼散射是一种重要的非线性光学频率变换技术,在拓展激光波段方面有十分广泛的应用前景。因此,寻找具有优良光学性质的拉曼介质,提高拉曼激光器性能,具有重要的研究价值。相比于传统的固体拉曼晶体,人造金刚石晶体具有拉曼增益系数大、拉曼频移大、导热率高和透过性好等显著优点,基于人造金刚石晶体的拉曼激光器能够获得更高的输出功率和转换效率。本文简要介绍了化学气相沉积法(CVD)制备的金刚石晶体的光学性质和热学特性,总结了基于人造金刚石晶体的拉曼激光器在紫外波段、可见光波段及红外波段的研究现状,并对其发展进行了展望。  相似文献   

3.
Recently, the ordinary qualitative criterion on how to distinguish between coherent and incoherent convolutions of broadband coherent anti‐Stokes Raman (CARS) signals generated by degenerate pump lasers has been revised in view of a quantitative analysis. The revision has established that incoherent CARS approach can be justified as unitary limit of the function ] erfc(Γ/σ1)/σ1, where Γ and σ1 are respectively the spectral widths of the Raman line and the degenerate pump lasers. The result was, however, limited to nonoverlapping Raman lines. In this work, the extension to a more common situation of closely spaced Raman transitions is considered. For large overlap between adjacent Raman lines, the new analysis suggests significant deviations from the previous result. Weak line mixing is also taken into consideration. Nonetheless, all types of deviations are characterized by a common tendency toward the incoherent limit. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we report on the concept and the design principle of ultrafast Raman loss spectroscopy (URLS) as a structure‐elucidating tool. URLS is an analogue of stimulated Raman scattering (SRS) but more sensitive than SRS with better signal‐to‐noise ratio. It involves the interaction of two laser sources, namely, a picosecond (ps) Raman pump pulse and a white‐light (WL) continuum, with a sample, leading to the generation of loss signals on the higher energy (blue) side with respect to the wavelength of the Raman pump unlike the gain signal observed on the lower energy (red) side in SRS. These loss signals are at least 1.5 times more intense than the SRS signals. An experimental study providing an insight into the origin of this extra intensity in URLS as compared to SRS is reported. Furthermore, the very requirement of the experimental protocol for the signal detection to be on the higher energy side by design eliminates the interference from fluorescence, which appears on the red side. Unlike CARS, URLS signals are not precluded by the non‐resonant background and, being a self‐phase‐matched process, URLS is experimentally easier. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
We demonstrate a new technique that combines polarization sensitivity of the coherent anti‐Stokes Raman scattering (CARS) response with heterodyne amplification for background‐free detection of CARS signals. In this heterodyne interferometric polarization CARS (HIP‐CARS), the major drawbacks of polarization and heterodyne CARS are rectified. Using a home‐built picosecond optical parametric oscillator, we are able to address vibrational stretches between 600 and 1650 cm−1 and record continuous high‐resolution Raman equivalent HIP‐CARS spectra. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Coherent anti-Stokes Raman scattering (CARS) and normal anti-Stokes Raman scattering (NARS) have been measured in (001) GaP at room temperature due to the 403 cm−1 LO phonons using a continuous wave (CW) 785.0 nm fixed-wavelength pump laser and a CW Stokes laser tunable in the 800-830 nm wavelength range. CARS measurements are normally made using pulsed lasers. The use of CW diode lasers allows a more accurate comparison between the measured and calculated values of the CARS signal. The pump and Stokes laser beams were linearly polarized perpendicular to each other, same as the pump and normal Stokes/anti-Stokes scattered light for the GaP sample used in this work. The pump and Stokes laser powers incident upon the GaP sample, located in the focal plane of a 20 mm effective focal length lens, were <20 and 50 mW, respectively. The diameter of the laser beams in the focal plane of the focusing lens was determined to 40±5 μm. The pump and Stokes laser beam intensities incident upon the 0.3 mm thick GaP sample were <2 and 5 kW cm2, respectively. The powers of the CARS and NARS signals were measured using a Raman spectrometer. The signal output of the Raman spectrometer was calibrated using the pump laser and several neutral density filters. The Raman linewidth (full-width at half-maximum) of the LO phonons was determined to be 0.95±0.05 cm−1, using the variation of the CARS signal with the wavelength of the Stokes laser. The measured powers of the CARS and NARS signals are about a factor of 5 and 1.5, respectively, smaller than those calculated from the corresponding theoretical expressions.  相似文献   

7.
用于光纤拉曼放大器抽运源的单级光纤拉曼激光器   总被引:5,自引:0,他引:5  
张敏明  刘德明  王英  黄德修 《光学学报》2005,25(12):634-1638
抽运光源是光纤拉曼放大器应用于密集波分复用系统的关键技术,设计了一种紧凑型的808nm激光二极管抽运的基于钒酸钇(Nd^3+:YVO4)晶体1342nm固体激光器模块,提出利用上述1342nm固体激光器抽运基于光纤光栅的单级全光纤型拉曼谐振器获得1.4μm激光输出的光纤拉曼激光器,分析了固体激光器的阈值特性、性能优化方法和单级光纤拉曼谐振器的设计方法。上述1342nm固体激光器模块在抽运功率2W时获得了最大655mW的激光输出功率和42.6%的斜率效率,单级拉曼谐振器的1342nm到1.4μm光功率转换斜率效率达75%,在1425nm、1438nm、1455nm和1490nm处的输出功率达到300mW以上。最后给出基于1.4μm光纤拉曼激光器抽运的宽带平坦放大的光纤拉曼放大器的结构参量和性能测试结果。  相似文献   

8.
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy is an important technique for spectroscopy and chemically selective microscopy, but wider implementation requires dedicated versatile tunable sources. We describe an optical parametric oscillator (OPO) based on a magnesium oxide‐doped periodically poled lithium niobate crystal, with a novel variable output coupler, used as a tunable coherent light source. The OPO's signal wavelength ranges from 880 to 1040 nm and its idler wavelength from 1090 to 1350 nm. We use this OPO to demonstrate high‐resolution narrowband CARS spectroscopy on bulk polystyrene from 900 to 3600 cm−1, covering a large part of the molecular fingerprint region. Recording vibrational spectra using narrowband CARS spectroscopy has several advantages over spontaneous Raman spectroscopy, which we discuss. We isolate the resonant part of the CARS spectrum and compare it to the spontaneous Raman spectrum of polystyrene using the maximum entropy method of phase retrieval; we find them to be in extremely good agreement. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
During the past decade coherent anti‐Stokes Raman scattering (CARS) microscopy has evolved to one of the most powerful imaging techniques in the biomedical sciences, enabling the label‐free visualization of the chemical composition of tissue in vivo in real time. While the acquisition of high‐contrast images of single cells up to large tissue sections enables a wide range of medical applications from routine diagnostics to surgical guidance, to date CARS imaging is employed in fundamental research only, essentially because the synchronized multiple wavelength pulsed laser sources required for CARS microscopy are large, expensive and require regular maintenance. Laser sources based on optical fibers can overcome these limitations combining highest efficiency and peak powers with an excellent spatial beam profile and thermal stability. In this review we summarize the different fiber‐based approaches for laser sources dedicated to coherent Raman imaging, in particular active fiber technology and passive fiber‐based frequency conversion processes, i.e. supercontinuum generation, soliton self‐frequency shift and four‐wave mixing. We re‐evaluate the ideal laser parameters for CARS imaging and discuss the suitability of different laser concepts for turn‐key operation required for routine application in clinics.

  相似文献   


10.
Coherent anti‐Stokes Raman scattering (CARS) microspectroscopy has demonstrated significant potential for biological and materials imaging. To date, however, the primary mechanism of disseminating CARS spectroscopic information is through pseudocolor imagery, which explicitly neglects a vast majority of the hyperspectral data. Furthermore, current paradigms in CARS spectral processing do not lend themselves to quantitative sample‐to‐sample comparability. The primary limitation stems from the need to accurately measure the so‐called nonresonant background (NRB) that is used to extract the chemically sensitive Raman information from the raw spectra. Measurement of the NRB on a pixel‐by‐pixel basis is a nontrivial task; thus, surrogate NRB from glass or water is typically utilized, resulting in error between the actual and estimated amplitude and phase. In this paper, we present a new methodology for extracting the Raman spectral features that significantly suppresses these errors through phase detrending and scaling. Classic methods of error correction, such as baseline detrending, are demonstrated to be inaccurate and to simply mask the underlying errors. The theoretical justification is presented by re‐developing the theory of phase retrieval via the Kramers–Kronig relation, and we demonstrate that these results are also applicable to maximum entropy method‐based phase retrieval. This new error‐correction approach is experimentally applied to glycerol spectra and tissue images, demonstrating marked consistency between spectra obtained using different NRB estimates and between spectra obtained on different instruments. Additionally, in order to facilitate implementation of these approaches, we have made many of the tools described herein available free for download. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

11.
The results of experimental and theoretical investigations of passive Q-switch Raman microchip lasers based on Nd3+:LSB active medium and Ba(NO3)2 Raman crystal are presented. It has been demonstrated that intracavity Raman conversion in the microchip lasers is a simple and efficient method, capable of delivering high power pulses with sub-100 ps duration. Intracavity generation of the 1st Stokes pulses with duration from 180 down to 48 ps and a peak power of 48 kW has been performed and studied. High peak power and short duration of the 1st Stokes pulses in microchip laser with Ba(NO3)2 Raman crystal allows to easily perform extracavity harmonic generation and frequency sum mixing in LBO, BBO, and KTP crystals with discrete-tunable wavelength from ∼1200 down to ∼240 nm. We have developed a generalized model of Q-switched Raman microchip lasers, that takes into account spatial inhomogeneity of pump, laser, and Stokes beams, thermalization within the upper and lower multiplets of activator ions in laser medium, and saturable absorber bleaching and recovery. For the microchip lasers with different saturable absorbers, the model achieves very good agreement with the presented experimental results in a wide range of pump powers.  相似文献   

12.
任秀云  田兆硕  孙兰君  付石友 《物理学报》2014,63(16):164209-164209
机载激光拉曼散射雷达技术可以快速获取次表层海水温度的三维分布,具有重要的实用价值和经济价值.首先,从理论上分析了水的伸缩振动拉曼谱峰值位置和半高全宽与激发波长之间的对应关系,发现随着激发波长的增大,拉曼峰逐渐向长波方向移动,且拉曼光谱半高全宽显著增大.然后,实验测量了不同温度下450 nm激光和532 nm激光激发的水的拉曼光谱,对比验证了上述理论分析结果.并采用单高斯峰拟合法分析了两组拉曼光谱,拟合出高斯峰峰值位置与温度之间的关系,分析了激发波长对温度测量精度的影响.研究发现,采用较长波长的激发光可以提高拉曼光谱的测量精度,从而改善测温精度.最后,建立了拉曼散射雷达方程,分析了拉曼散射系数与激光波长之间的关系,研究了激光波长对雷达系统探测深度的影响.结果表明,激光波长对雷达系统探测深度有很大的影响,采用480 nm以下波长的激光时雷达系统探测深度较大,而采用长波段激光时雷达系统探测深度会大幅降低.实际系统设计中选取激光光源时需要综合考虑上述两方面的影响.  相似文献   

13.
Raman spectroscopy based on the 1064‐nm laser excitation was suggested as a handy non‐invasive technique allowing to quickly determine sugar content in honey and similar food products. In the present study, the green 532‐nm laser radiation is explored instead as it provides higher‐quality spectra in a shorter time. The sample fluorescence was quenched by purification with activated carbon. For control mixture decomposition of Raman spectra to standard subspectra led to a typical error of the sugar content of 3%. Raman optical activity (ROA) spectra that could be measured at the shorter excitation wavelength as well provided a lower accuracy (~8%) than the Raman spectra because of instrumental sensitivity and noise limitations. The results show that Raman spectroscopy provides elegant and reliable means for fast analyses of sugar‐based food products. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Focus‐engineered coherent anti‐Stokes Raman scattering (FE‐CARS) microscopy is used to highlight the lateral interfaces between chemically distinct media. Interface highlighting is achieved by using a HG10 mode for the Stokes laser beam and a HG00 mode for the pump laser beam in the forward detection scheme. The spectral and the orientation dependence of FE‐CARS are found to be in agreement with theoretical predictions. A brief discussion on the relevance of this technique for imaging third‐order nonlinear susceptibility interfaces in thin samples of biological or chemical importance is presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
《Molecular physics》2012,110(19-20):2315-2320
Hyper Raman scattering (HRS) of the benzonitrile (BN) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) molecules is studied by means of ab initio calculations. The computational procedure employs a recently developed methodology for the analytic calculations of frequency-dependent polarizability gradients of arbitrary order, including perturbation dependent basis sets. The result are compared to normal Raman scattering (NRS) and coherent anti-Stokes Raman scattering (CARS) that previously have been studied using the same technology. It is found that some suppressed or silent modes in CARS and NRS spectra are clearly seen in HRS, and that although under general excitation conditions the HRS intensities are much lower than for CARS and NRS, HRS provides complementary information useful for target identification.  相似文献   

16.
相干反斯托克斯拉曼散射显微成像技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘双龙  刘伟  陈丹妮  屈军乐  牛憨笨 《物理学报》2016,65(6):64204-064204
基于全量子理论对相干反斯托克斯拉曼散射(CARS)过程进行了分析, 在此基础上搭建了单频CARS显微成像系统, 获得了不同尺寸聚苯乙烯微球高对比度的CARS显微图像. 为了标定成像系统的空间分辨率, 采用逐点扫描方式对直径为110 nm聚苯乙烯微球成像, 从而重构出系统的点扩展函数. 结果表明: 该CARS显微成像系统的横向空间分辨率约为600 nm, 而由阿贝衍射极限决定的理论空间分辨率约为300 nm. 分析了导致分辨率降低的原因, 并提出了解决方案. 为实现纳米分辨的CARS显微成像打下了坚实的基础.  相似文献   

17.
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy of gas‐phase CO2 is demonstrated using a single femtosecond (fs) laser beam. A shaped ultrashort laser pulse with a transform‐limited temporal width of ∼7 fs and spectral bandwidth of ∼225 nm (∼3500 cm−1) is employed for simultaneous excitation of the CO2 Fermi dyads at ∼1285 and ∼1388 cm−1. CARS signal intensities for the two Raman transitions and their ratio as a function of pressure are presented. The signal‐to‐noise ratio of the single beam–generated CO2 CARS signal is sufficient to perform concentration measurements at a rate of 1 kHz. The implications of these experiments for measuring CO2 concentrations and rapid pressure fluctuations in hypersonic and detonation‐based chemically reacting flows are also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
We have been able to observe the surface‐enhanced Raman scattering (SERS) from 4‐mercaptopyridine (4‐Mpy) molecules adsorbed on ZnO nanocrystals, which display 103 enhancement factors (EFs). An excitation wavelength‐dependent behavior is clearly observed. Another molecule BVPP is also observed to have surface‐enhanced Raman signals. The chemical enhancement is most likely responsible for the observed enhancement, since plasmon resonances are ruled out. The research is important not only for a better understanding of the SERS mechanism, but also for extension of the application of Raman spectroscopy to a variety of adsorption problems on a semiconductor surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Precise interpretation of spectral measurements is central to the development of the full extent of the applicative potential of coherent anti‐Stokes Raman spectroscopy (CARS). One recognized problem that jeopardizes the achievement of high precision is the determination of the best spectral convolution over the relevant bandwidths when degeneracy of laser frequencies is involved. Although the analytical solutions of CARS signals generated by pump and Stokes lasers with standard (i.e. Gaussian or Lorentzian) lineshapes are well known, research in this field has overlooked the criterion on how to discern coherence between spectral components of the third‐order nonlinear susceptibility. Understandably, the ordinary approach is based on an intuitive comparison between the spectral width σ1 of the pump laser with respect to the width Γ of the relevant Raman transitions. More precisely, if σ1 ≪ Γ, then the spectral synthesis can be obtained in the limit of narrowband pump; otherwise spectral coherence has to be included in the calculation leading to problematic spectral analysis. In an attempt to clarify this qualitative criterion better, the present work demonstrates that the limit between the two opposite regimes can have a clearer and neater definition than that accepted so far. In this case, this paper shows that for nonoverlapping Raman transitions determined by a Lorentzian susceptibility, the issue is governed by the analytic function erfc(Γ/σ1)/σ1, which depends uniquely on the ratio Γ/σ1. The unitary limit of this function for σ1 ≪ Γ justifies the incoherent or the narrowband‐pump approach. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The rigid rotor approximation (RRA) is commonly assumed in the Raman cross section used in thermometric analysis based on coherent anti‐Stokes Raman scattering (CARS). In this paper, we discuss instead the role of the coupling between molecular vibrations and rotations in view of the alterations found in the amplitude of CARS signals of basic molecules and, in the end, we demonstrate that the deviation of a few percent from the RRA results in corrections to the measured temperature that are comparable to the thermometric accuracy of very well‐known Q‐branch CARS measurements on nitrogen, which is unanimously regarded as the fundamental molecule in CARS thermometry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号