首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
固体微/纳米尺度传热理论研究进展   总被引:3,自引:0,他引:3  
随着半导体技术的飞速发展,器件的尺寸已进入到微/纳米尺度。由于量子效应、表面及界面效应,使得微尺度下的热物性与宏观尺度下有了明显的区别。人们针对微观传热领域的特点,发展了声子玻尔兹曼传输方程、分子动力学等方法,取得了一定的成果,但仍存在不少问题。一些基础概念问题,特别是非平衡态下的局域温度的定义,有待澄清。本文主要回顾近年来微/纳米尺度传热在理论和数值模拟方面的进展,以及目前所面临的挑战和问题。  相似文献   

2.
陈林根  冯辉君  谢志辉  孙丰瑞 《物理学报》2013,62(13):134401-134401
基于构形理论, 以(火积)耗散率最小为优化目标, 在微、纳米尺度下对圆盘导热问题进行构形优化, 得到尺寸效应影响下的无量纲当量热阻最小的圆盘构造体最优构形. 结果表明: 在微、纳米尺度下, 尺寸效应影响下的圆盘构造体最优构形与无尺寸效应影响时的圆盘构造体最优构形有明显区别. 存在最佳无量纲高导热材料通道长度使无量纲当量热阻取得最小值; 随着扇形单元体数目的增大, 最小无量纲当量热阻先减小后增大, 存在最佳的扇形单元体数目使得无量纲当量热阻取得双重最小值, 这与常规尺度下圆盘构造体相应的性能特性明显不同. (火积)耗散率最小的圆盘构造体(火积)耗散率比最大温差最小的构造体(火积)耗散率降低了7.31%, 也即圆盘构造体的平均传热温差降低了7.31%. 微、纳米尺度下基于(火积)耗散率最小的圆盘构造体最优构形能够降低圆盘构造体的平均传热温差, 同时有助于提高其整体传热性能. 本文工作有助于进一步拓展(火积)耗散极值原理的应用范围. 关键词: 构形理论 (火积)耗散率最小 微、纳米尺度 广义热力学优化  相似文献   

3.
微米/纳米尺度热科学与T程学中的若干重要问题及进展   总被引:3,自引:0,他引:3  
刘静 《物理》2001,30(7):398-406
文章阐述了当代最新的前沿学科之一--微米/纳米尺度热科学与工程学的研究意义、内容、进展及其相应的基本理论与实验研究方法,分析了由于微米/纳米器件尺度效应引起的一系列挑战性热问题,讨论了相应出现的一些新现象和新概念,指出了微米/纳米热科学方面新近发展的几类理论与实验技术的成功和不足之处,并归纳了该领域内若干可供探索的途径和新方向,特别就一些典型微米/纳米热器件及微尺度生物传热中的一些重要科学问题及其工程应用作了介绍.  相似文献   

4.
基于构形理论,以(火积)耗散率最小为优化目标,在微、纳米尺度下对树状圆盘导热问题进行构形优化,得到整体导热性能最优的树状圆盘最优构形.结果表明:在微、纳米尺度下,尺寸效应影响下的树状圆盘构造体最优构形与无尺寸效应影响时的树状圆盘构造体最优构形有明显区别.存在高导热材料最佳单元体占比使得树状圆盘无量纲平均传热温差取得最小值.对于3种结构形式(nn、nb和bb)的树状圆盘,其无量纲临界半径分别为1.16、1.45和1.75.当树状圆盘半径大于临界半径时,圆盘高导热材料需采用树状布置,反之则采用辐射状布置.基于(火积)耗散率最小的树状圆盘导热构形优化能够降低圆盘构造体的平均传热温差,提高其整体传热性能.  相似文献   

5.
微米/纳米尺度热科学与工程学中的若干重要问题及进展   总被引:2,自引:0,他引:2  
刘静 《物理》2001,30(7):398-406
文章阐述了当代最新的前沿学科之一--微米/纳米尺度热科学与工程学的研究意义。内容,进展及其相应的基本理论与实验研究方法,分析了由于微米/纳米器件尺度效应引起的一系列挑战性热问题,讨论了相应出现的一些新现象和新概念,指出了微米/纳米热科学方面新近发展的几类理论与实验技术的成功和不足之处,并归纳了该领域内若干可供探索的途径和新方法,特别就一些典型微米/纳米热器件及微尺度生物传热中的一些重要科学问题及其工程应用作了介绍。  相似文献   

6.
本文计算了平面内涨落电磁场产生的电磁能密度和两平行平面间的微纳米尺度辐射热流密度,分析了近场辐射中单色效应对辐射的影响,结果表明对于碳化硅(SiC),单色效应极大地提高了电磁能密度和近场辐射换热量,而对于铝(Al)则没有明显的单色效应.本文还分析了不同偏振态对热辐射的影响.针对SiC材料,在微纳米尺度范围内,电磁能密度和辐射换热量主要受p偏振的近场倏逝波的影响,而s偏振电磁波和p偏振的远场传播波对微纳米尺度下辐射总量的贡献可以忽略.  相似文献   

7.
近年来,微尺度条件下功能性流体换热与流动已经成为极具潜力和挑战性的课题,在化工、医药、传热与能源利用等系统中获得广泛应用。超临界CO_2流体作为一种天然替代性环保工质,在相关细微尺度下已证明具有良好的热力学性能。本研究采用了数值计算的方法对近临界CO_2流体在微通道内流动稳定性和换热特性进行了系列的探索。研究发现,在靠近临界点的相对较宽泛的区域内,流体具有强膨胀特性和低热扩散特性,从而在微尺度条件下产生局部旋涡流动,大大促进了微尺度的混合和对流换热效率。进一步,研究针对这种微尺度局部涡动进行了机理分析,获得了微通道内近临界流体瞬态换热和超临界热膨胀效应特性。  相似文献   

8.
表面纳米结构及其自由能对滴状冷凝传热的影响   总被引:1,自引:0,他引:1  
通过抛光和氧化刻蚀方法在基体壁面形成微米和纳米尺度的微观结构,然后制备十八烷基硫醇分子自组装膜,从而得到空气中表观接触角为160°的SAM-1表面和空气中表观接触角为116°的SAM-2表面.实验研究了常压条件下两类表面的滴状冷凝传热特性.结果表明两种表面都能够有效提高冷凝传热效果.但是,具有表面纳米结构的SAM-1表面的滴状冷凝传热特性低于SAM-2表面.分析了纳米结构和液固自由能差效应对滴状冷凝传热影响的共同作用机理.  相似文献   

9.
钱俊 《物理》2013,(11)
微纳加工领域是从事物理学研究与应用开发人员,特别是从事纳米材料与器件研究的物理工作者十分关注和重视的领域。这是由于人们在对纳米材料性能的研究中发现,性能与材料的微观结构尺寸的变化关系密切。例如,随着材料尺度的减小,由于表面效应、体积效应和量子尺寸效应的影响,材料的物理性能和采用该材料制作的器件特性等都可能表现出与宏观体相材料和相关器件特性显著不同的特点。这些特点是材料性能对微观结构尺寸变化的敏感性所导致的结果。正是由于这种敏感性,使得无论在纳米材料科学问题研究还是在纳米器件发展应用中,对材料生长控制和微加工的精确程度都提出了极为苛刻的要求。所以,需要纳米、甚至原子、分子层次的微纳加工技术,以探索材料与器件的新特性。可见,基础科学的研究发展往往需要技术科学提供强有力的支持,要想探索在纳米尺度下物质的变化规律、新的性质和器件功能及可能的应用领域,同样离不开相应的技术手段。微纳加工技术作为当今高技术发展的重要领域之一,是实现功能结构与器件微纳米化的基础。借助微纳加工,人们可以按照需求来设计、制备具有优异性能的纳米材料或纳米结构及器件与装置,发展探测和分析纳米尺度下的物理、化学和生物等现象的方法和仪器,准确地表征纳米材料或纳米结构的物性,探索纳米尺度下物质运动的新规律和新现象。  相似文献   

10.
本文设计搭建了带有蒸发器的两相闭式热虹吸管的气液两相流动与传热特性的可视化实验平台,制备了多种尺寸的光滑表面蒸发器,并采用电镀的方法制备了微纳米尺度的多孔表面蒸发器,研究了光滑表面蒸发器和微纳米尺度多孔表面蒸发器内工质R134a的气液两相运行状态和相变传热过程。研究结果表明:光滑表面蒸发器的流道尺寸会影响其在不同热流密度条件下的传热系数;多孔表面蒸发器的传热效果要远高于光滑表面的蒸发器,最高达到光滑表面蒸发器传热系数的4倍;不同尺寸的光滑表面蒸发器和多孔表面蒸发器热流密度从零到临界热流密度所经过的沸腾状态也存在较大差异。  相似文献   

11.
作为一种高效、 局域化且高度可控的纳米热源, 金纳米棒越来越多的应用于肿瘤的光热治疗之中。 为探讨微观尺度下金纳米棒的产热与传热机理, 以及颗粒之间耦合作用对体系光热效应的影响。 本文运用基于有限元的 COMSOL 软件, 建立了金纳米棒光热耦合的三维模型, 分析了排布方式和颗粒间距等因素对纳米棒光学性质和光热响应的影响。 研究表明, 不同排布方式下近距离耦合颗粒之间的耦合强度随间距的增大呈指数衰减, 在一定间距范围内这种衰减行为可以被等离子体尺度方程描述; 单体共振波长照射下, 颗粒间的聚集影响光热治疗的效果, 在颗粒耦合作用范围内, 分散性越高, 体系加热效果越好。 本文研究模型及所得结论可为金纳米棒的产热与传热机理及肿瘤的光热治疗提供参考与指导。  相似文献   

12.
采用数值模拟的方法研究了不同工质在微通道内流动传热特性的差异。对比了去离子水、纳米流体Al2O3/Water、CuO/Water、TiO2/Water、Cu/Water等工质在微通道内的流动传热特性,并研究了纳米颗粒的浓度对流动换热特性的影响。结果表明:CuO/Water作为冷却工质时的对流换热系数比水增加了9.6%,微通道底面平均温度降低了2.6 K,换热性能明显优于其他几种纳米流体。由于纳米颗粒的加入,纳米流体的粘度比水大,进出口的压降比水大。纳米颗粒的体积分数越大,对流换热系数越大,纳米流体在微通道内的换热性能越好。  相似文献   

13.
本文针对微通道内气粒间流动传热过程开展数值研究,所建模型中气体处理为可压缩/变物性流体,并在气固交界处采用速度滑移和温度跳跃边界条件以考虑其微尺度效应。在数值研究基础上,分析了微通道受限空间、克努森数、气体流速以及颗粒表面温度对微通道内气粒换热的影响。研究结果表明,受限空间结构将强化气粒间换热过程,颗粒表面平均传热努赛尔数随微通道气体流量增大而增大,克努森数增大以及颗粒表面温度升高都将导致颗粒表面平均传热努赛尔数减小。  相似文献   

14.
提出一种可以直接测试有、无纳米氨水溶液氨气发生量的氨水纳米降膜发生实验装置,通过有、无纳米的氨水溶液对比实验,发现添加合适纳米颗粒能够增加氨气发生率。结合氨水纳米溶液降膜发生过程试验结果,以及前人关于纳米颗粒强化传热传质方面的研究,分别从纳米粒子的微运动、界面效应、Marangoni效应、纳米流体物性等方面进行强化发生机理分析,证明纳米流体的粒子微运动和纳米流体的物性是纳米流体强化氨水降膜发生的两大主要因素。  相似文献   

15.
金属纳米棒弯曲力学行为的分子动力学模拟   总被引:5,自引:0,他引:5       下载免费PDF全文
吴恒安  倪向贵  王宇  王秀喜 《物理学报》2002,51(7):1412-1415
纳米结构的力学性能是纳米超微型器件设计的基础,分子动力学是研究纳米结构力学行为的有效方法.本文采用镶嵌原子方法模拟金属铜纳米棒的弯曲力学行为.计算结果表明由于尺寸效应和表面效应的影响,在纳观尺度下纳米结构表现出与宏观尺度下完全不同的力学特征.金属纳米棒弯曲力学过程分为初始变形迟滞阶段、线弹性变形阶段和塑性变形阶段.塑性变形阶段表现出“刚化”、“台阶”和较强的延性等特征. 关键词: 纳米结构 纳米棒 弯曲性能 分子动力学  相似文献   

16.
纳米悬浮液热导率测量及其预测模型的探讨   总被引:1,自引:0,他引:1  
纳米颗粒悬浮液具有广泛应用于强化传热的潜在优势。本文采用加入表面活性剂的方法提高纳米悬浮液的悬浮稳定性,并用瞬态热线法测量了热导率。在分析现有理论模型和纳米悬浮液热导率影响因素研究的基础上,从弹性传动和非弹性传动两方面分析了纳米尺度效应导致纳米悬浮液热导率提高的机理。发现已有的理论公式仍然存在一定欠缺,预测值比实验值偏低,有关机理尚有待于深入探讨。  相似文献   

17.
那仁满都拉 《物理学报》2014,63(19):194301-194301
根据Mindlin理论,考虑宏观尺度非线性效应、二次和三次微尺度非线性效应以及微尺度频散效应,建立了描述一维微结构固体中纵波传播的一种新模型.用动力系统定性分析理论,分析了微结构固体中孤立波的存在条件及其几何特征,证明了当介质参数和孤立波传播速度满足适当条件时,在二次微尺度非线性效应的影响下微结构固体中可以形成一种非对称孤立波,在三次微尺度非线性效应的影响下微结构固体中可以形成一种对称孤立波.最后,用数值方法进一步验证了上述结论.  相似文献   

18.
夏志林 《物理学报》2011,60(5):56804-056804
采用蒙特卡罗方法模拟了1064 nm,GW/cm2级脉冲激光辐照下,纳米尺度材料中电子迁移及加速过程.电子在激光场中迁移的过程涉及晶格散射、表面散射以及碰撞电离等作用.结果表明:材料的尺度小到一定程度后,表面散射作用主导电子散射过程,小尺寸限制效应表现明显,电子很难有效地吸收激光能量.研究结果对分析具有纳米尺度微结构材料的激光损伤行为提供了依据.同时,根据该小尺寸限制效应可以设计出具有新型纳米微结构的高激光损伤阈值薄膜. 关键词: 激光辐照 小尺度效应 电子加速 蒙特卡罗模拟  相似文献   

19.
郑伯昱  董慧龙  陈非凡 《物理学报》2014,63(7):76501-076501
本文提出了基于量子修正的非平衡态分子动力学模型,可用于石墨烯纳米带热导率的表征.利用该模型对不同温度下,不同手性及宽度的石墨烯纳米带热导率进行了研究,结果发现:相较于经典分子动力学模型给出的热导率随温度升高而单调下降的结论,在低于Debye温度的情况下,量子修正模型的计算结果出现了反常现象.本文研究还发现,石墨烯纳米带的热导率呈现出明显的边缘效应及尺度效应:锯齿型石墨烯纳米带的热导率明显高于扶手椅型石墨烯纳米带;全温段的热导率及热导率在低温段随温度变化的斜率均随宽度的增加而增大.最后,文章用Boltzmann声子散射理论对低温段的温度效应及尺度效应进行了阐释,其理论分析结果说明文章所建模型适合在全温段范围内对不同宽度和不同手性的热导率进行精确计算,可为石墨烯纳米带在传热散热领域的应用提供理论计算和分析依据.  相似文献   

20.
采用CFD方法对水在矩形光滑微通道内的流动和传热特性进行了数值模拟.计算结果表明微通道的长径比、当量直径、高宽比和孔隙率都对其流动和传热有着不同程度的影响.在保持长径比大于70而使流动的入口效应可忽略的前提下,分别模拟了当量直径,高宽比和孔隙率对微通道流动和传热的影响,得到了各种工况下的流动和传热规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号