首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a semianalytical solution to the problem of wave excitation in an elastically supported one-dimensional waveguide with a system of point obstacles, we analyze the relation between the observed effects of blocking-transmission and the discrete spectrum point distribution in the complex frequency plane. We check the assumption, stemming from earlier numerical analysis for two-dimensional elastic waveguides with extended obstacles, on whether the occurrence of transmission frequencies in the blocking range is related to the presence of close-to-the-real-axis points of a discrete spectrum. The number of such spectral points increases in proportion to the number of obstacles, giving in the limit continuous transmission bands described by the Bloch-Floquet theory for infinite periodic structures.  相似文献   

2.
The multimodal admittance method and its improvement are presented to deal with various aspects in underwater acoustics, mostly for the sound propagation in inhomogeneous waveguides with sound-speed profiles, arbitrary-shaped liquid-like scatterers, and range-dependent environments. In all cases, the propagation problem governed by the Helmholtz equation is transformed into initial value problems of two coupled first-order evolution equations with respect to the modal components of field quantities(sound pressure and its derivative), by projecting the Helmholtz equation on a constructed orthogonal and complete local basis. The admittance matrix, which is the modal representation of Direchlet-to-Neumann operator, is introduced to compute the first-order evolution equations with no numerical instability caused by evanescent modes. The fourth-order Magnus scheme is used for the numerical integration of differential equations in the numerical implementation. The numerical experiments of sound field in underwater inhomogeneous waveguides generated by point sources are performed. Besides, the numerical results computed by simulation software COMSOL Multiphysics are given to validate the correction of the multimodal admittance method. It is shown that the multimodal admittance method is an efficient and stable numerical method to solve the wave propagation problem in inhomogeneous underwater waveguides with sound-speed profiles, liquid-like scatterers, and range-dependent environments. The extension of the method to more complicated waveguides such as horizontally stratified waveguides is available.  相似文献   

3.
Numerical simulation of traveling wave excitation, propagation, and diffraction in structures with local inhomogeneities (obstacles) is computationally expensive due to the need for mesh-based approximation of extended domains with the rigorous account for the radiation conditions at infinity. Therefore, hybrid numerical-analytic approaches are being developed based on the conjugation of a numerical solution in a local vicinity of the obstacle and/or source with an explicit analytic representation in the remaining semi-infinite external domain. However, in standard finite-element software, such a coupling with the external field, moreover, in the case of multimode expansion, is generally not provided. This work proposes a hybrid computational scheme that allows realization of such a conjugation using a standard software. The latter is used to construct a set of numerical solutions used as the basis for the sought solution in the local internal domain. The unknown expansion coefficients on this basis and on normal modes in the semi-infinite external domain are then determined from the conditions of displacement and stress continuity at the boundary between the two domains. We describe the implementation of this approach in the scalar and vector cases. To evaluate the reliability of the results and the efficiency of the algorithm, we compare it with a semianalytic solution to the problem of traveling wave diffraction by a horizontal obstacle, as well as with a finite-element solution obtained for a limited domain artificially restricted using absorbing boundaries. As an example, we consider the incidence of a fundamental antisymmetric Lamb wave onto surface and partially submerged elastic obstacles. It is noted that the proposed hybrid scheme can also be used to determine the eigenfrequencies and eigenforms of resonance scattering, as well as the characteristics of traveling waves in embedded waveguides.  相似文献   

4.
多级阻振质量阻隔振动波的传递特性研究   总被引:5,自引:0,他引:5       下载免费PDF全文
利用波动理论的分析、处理方法,分析了多级平行阻振质量阻隔振动波传递的特性,给出了多级阻振质量对平面弯曲波传递的阻抑公式,讨论了平面弯曲波传递时形成的穿透频段和堵塞频段,并进行了相应的算例分析,采用有限元法对多级阻振质量的隔振性能进行了数值计算,结果表明:阻振质量对偏离法向角的弯曲波分量的阻抑较强,传递能量的损失较大;多级阻振质量能够较好地阻抑结构声的传递,且阻抑效果随着阻振级数的增加而增大;在有几个阻振质量的情况下,通过改变它们的平行性,可以提高其隔振效果;且如果将不同质量、不同横截面形状的阻振质量前后交错配置,同样可以使总的隔振效果提高,这对于多级阻振质量在船体结构减振降噪中的应用具有重要的参考意义。  相似文献   

5.
Combined with the supercell technique, the plane wave expansion method is used to calculate the band structures of the two-dimensional solid–solid phononic crystals with the random disorders in either radius or location of the scatterers. Phononic systems with plumbum scatterers embedded in an epoxy matrix are calculated in detail. The influences of the disorder degree on the band structures for both anti-plane and in-plane wave modes are investigated. It is found that, with increase of the disorder degree, the band gaps become narrower with more flat bands appearing in the gaps. Both displacement distribution and response spectra show that at the flat bands, elastic waves are localised due to the presence of the disorder. Wave localisation is more pronounced at the flat bands near the lower/upper edge for the radius/location disorder. Wave propagation and localisation in a randomly disordered system with a point defect is also studied. The influence of the disorder on the point-defect state is discussed. The results show that the disorder can tune the frequencies of the defect states. It is particularly noticed that the double degenerate mode appearing within the gap of the mixed in-plane waves is split up into two separated ones when the random disorder is introduced into the system. Generally, the influence of the disorder is more pronounced for the mixed in-plane modes than the anti-plane modes. The analysis of this paper is relevant to the assessment of the influences of manufacture errors on wave behaviours in phononic crystals as well as the possible control of wave propagation by intentionally introducing disorders into periodic systems.  相似文献   

6.
The propagation of flexural waves in a two-dimensional periodic plate which rests on an orthogonal array of equi-spaced simple line supports has been investigated. A type of plane wave motion has been considered. An energy method has been developed to predict the frequency of wave propagation in terms of the propagation constants. A Galerkin type of analysis has been used, incorporating assumed complex modes of wave motion for the identical rectangular elements of the periodic plate. Expressions for the frequency have been obtained firstly by using simple polynomial modes for the plate displacements, and then (alternatively) by using characteristics beam function modes. The use of these different modes has first been demonstrated by applying them to the analysis of wave propagation in periodic beams. A single polynomial mode which satisfies the geometric and wave-boundary conditions of the periodic plate element leads to an elegant expression relating the frequency and the wave propagation constants in the first propagation band. The frequencies so obtained compare well with those found from a multi-mode, characteristic beam function analysis. The latter involves much more algebra, is solved as an eigenvalue problem, and yields the frequencies in as many propagation bands as are desired. The bounding frequencies and corresponding wave motions in the first and higher propagation bands have been identified, and it has been shown that the propagation bands can overlap. Consideration has been given to one-dimensional “strip” structures which are equivalent to the two-dimensional plate when a plane wave in a general direction is propagating. Furthermore, it is shown that the natural frequencies of finite rectangular periodic plates can be obtained very simply from the results of the wave propagation analysis.  相似文献   

7.
Arafa H Aly  Ahmed Mehaney 《中国物理 B》2016,25(11):114301-114301
This study reports on the propagation of elastic waves in 1D and 2D mass spring structures.An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples.An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions.Additionally,the evolution of the band gap as a function of mass value is discussed.Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system.A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency.The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide.Moreover,we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system.We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal.The presented simulation data is validated through comparison with the published research,and can be extended in the development of resonators and MEMS verification.  相似文献   

8.
Elastic waves excited by a plane piezoelectric source with an arbitrary shape on the surface of a multilayered medium have been studied for the first time in this paper. On the basis of Abzo-zena [Geophys. J. R. Astron. Soc. 58, 91-105 (1979)] and Menke [Geophys. J. R. Astron. Soc. 59, 315-323 (1979)], the propagator matrix for the elastic wave field in multilayered medium is extended from two- to three-dimensional (3D) space. 3D elastic wave field is investigated and the displacement-stress response for the boundary conditions is obtained. The propagation of elastic wave in multilayered media is analyzed in 3D space in the frequency domain. The P-SV and SH modes corresponding to the poles are studied. The excitation and propagation of the modes are analyzed further. It is found that the propagation velocities of the P-SV and SH modes do not depend on the propagation azimuth theta in the plane parallel to the free surface of the multilayered medium while the displacement amplitudes are strongly dependent on the azimuth theta. The directional distribution functions of the modes are independent of the medium parameters and the modes and dependent on the shape and excitation fashion of the source. Finally, as an example, the displacement fields of the P-SV and SH modes excited by a rectangle source are analyzed. The displacement representation and numerical results of the directivity distribution functions for the P-SV and SH modes are obtained.  相似文献   

9.
This paper presents a novel configuration of channel drop filters based on two-dimensional photonic crystal slabs in silicon-on-insulator platforms. The structure is composed of two photonic crystal line-defect waveguides as input and output ports, along with an L3 cavity with ring-shaped border holes. The effects of structural parameters and fabrication errors on resonance frequency and drop efficiency are investigated. Band structure and propagation of electromagnetic field through device are calculated by plane wave expansion and finite-difference time-domain methods. The results show that the quality factor and line-width of output signal are ~5690 and 0.27 nm, respectively, indicating that the proposed filter can be properly used in dense wavelength division multiplexing systems with 0.8 nm channel spacing.  相似文献   

10.
Sonic crystals are artificial structures consisting of a periodic array of acoustic scatterers embedded in a homogeneous matrix material, with a usually large impedance mismatch between the two materials. They exhibit strong sound attenuation at selective frequency bands due to the interference of multiply reflected waves. However, sound attenuation bands in the audible range are only achieved by unfunctionally large sonic crystals. If local resonators are used instead of simple scatterers, the frequencies of the attenuation bands can be reduced by about two orders of magnitude. In the present paper we perform numerical simulations of acoustic wave propagation through sonic crystals consisting of local resonators using the local interaction simulation approach (LISA). Three strong attenuation bands are found at frequencies between 0.3 and 6.0 kHz, which do not depend on the periodicity of the crystal. The results are in good qualitative agreement with experimental data. We analyze the dependence of the resonance frequencies on the structural parameters of the local resonators in order to create a tool for design and optimization of any kind of sonic crystal.  相似文献   

11.
A theory is developed for generating short time, monostatic reverberation realizations caused by three-dimensionally distributed volume inhomogeneities in stratified media. A wave number integral approach to treating the propagation to and from the scatterers, combined with a two-dimensional spectral representation of the azimuthally averaged scatterer realizations and a novel numerical implementation, combine to yield an efficient, high fidelity reverberation simulator for predicting monostatic backscatter from horizontally stratified sediments.  相似文献   

12.
It has previously been shown that there is close agreement between theoretical and experimental behaviour of pulses of ultrasound propagating in solid cylindrical waveguides. Waveguides are used in a number of areas of medical ultrasonics and it is therefore important to be able to model sound propagation in them accurately. This paper extends the analysis of guided wave propagation to hollow waveguides. In particular, frequency spectra of modes of progagation are given and theoretical group velocity curves are compared with experimental results. Signal strengths of modes propagating in both solid and hollow stainless steel waveguides of similar cross-sectional area are also compared.  相似文献   

13.
存在障碍物时电波传播抛物线方程分析及其验证   总被引:1,自引:0,他引:1       下载免费PDF全文
魏乔菲  尹成友  范启蒙 《物理学报》2017,66(12):124102-124102
双向抛物线方法主要用于起伏地形下电波传播问题的计算,该算法本身无法处理地面存在障碍物,尤其是真实环境下障碍物与地面为不同媒质的情况.因此本文提出一种用于存在障碍物时电波传播计算的抛物线方程新算法.该方法采用区域分解,对不同障碍物区域的场值进行分区计算,并对计算结果进行相位修正,从而实现该情况下空间中场值的计算.在此基础上,使用矩量法来精确验证抛物线方法的计算精度.通过实例分析,证明了存在障碍物时新算法的精确性,为之后求解真实环境下的电波传播问题提供了参考.  相似文献   

14.
15.
16.
A new type of THz waveguides, which employs a solid polyethylene rod as the core and polyethylene tubes in a periodic array of square lattice as the cladding, is proposed. Optical properties of this new THz waveguide, especially in dispersion, confinement loss and single mode property, are investigated in detail with the plane wave expansion method and the beam propagation method. Numerical results demonstrate that the new THz waveguide can reach not only low dispersion but also low confinement loss at single mode propagation. Therefore, the square lattice structure is a better candidate as THz waveguides than the triangular ones.  相似文献   

17.
The dispersion curves describe wave propagation in a structure, each branch representing a wave mode. As frequency varies the wavenumbers change and a number of dispersion phenomena may occur. This paper characterizes, analyzes, and quantifies these phenomena in general terms and illustrates them with examples. Two classes of phenomena occur. Weak coupling phenomena-veering and locking-arise when branches of the dispersion curves interact. These occur in the vicinity of the frequency at which, for undamped waveguides, the dispersion curves in the uncoupled waveguides would cross: if two dispersion curves (representing either propagating or evanescent waves) come close together as frequency increases then the curves either veer apart or lock together, forming a pair of attenuating oscillatory waves, which may later unlock into a pair of either propagating or evanescent waves. Which phenomenon occurs depends on the product of the gradients of the dispersion curves. The wave mode shapes which describe the deformation of the structure under the passage of a wave change rapidly around this critical frequency. These phenomena also occur in damped systems unless the levels of damping of the uncoupled waveguides are sufficiently different. Other phenomena can be attributed to strong coupling effects, where arbitrarily light stiffness or gyroscopic coupling changes the qualitative nature of the dispersion curves.  相似文献   

18.
The method of path integration is applied to the analysis of wave propagation in both a graded-index optical waveguide and in an otherwise homogeneous infinite medium whose refractive indices have random statistical inhomogeneities superposed upon a regular variation of refractive index with suitable averaged properties. The authors use techniques originally employed in the context of electron propagation in a set of random scatterers to calculate the averaged Green function describing paraxial wave propagation in a medium whose refractive index has statistical inhomogeneities. The concept of an averaged density of modes is introduced, and the paper presents detailed calculations of this quality for two limiting case. In the first, the correlation length associated with the distribution of inhomogeneities is zero along the direction of propagation. In the second, the Feynman variational technique is used to describe the propagator in a medium whose statistical inhomogeneities have an infinite correlation length along the direction of propagation. Comments are made about the intermediate case which is of greater relevance to real waveguides.  相似文献   

19.
In this paper, the dispersion properties of elastic waves in helical waveguides are investigated. The formulation is based on the Scaled Boundary Finite Element method (SBEFM). With a set of orthogonal unit basis introduced as the contravariant basis, the helical coordinate is firstly considered, where components of tensor retain the dimension of original quantity. Based on the strain–displacement relation, the eigenvalue matrix is obtained about wavenumbers and frequencies. The cross section of the waveguides is discretized by using high-order spectral elements. Moreover, the formulated linear matrix is utilized to design efficient and accurate algorithms to compute the eigenvalues of helical waveguides. Compared with the Pochhammer–Chree curves, the convergence and accuracy of the SBFEM are discussed. Finally, we give some dispersion curves for a wide range of lay angles and analyze in detail properties of cut-off frequency, mode separation and mode transition for elastic wave propagation in the helical waveguides.  相似文献   

20.
Based on the coupled-mode theory, the propagation of light pulses is studied analytically for a system of an infinite number of tunnel-coupled parallel equidistant waveguides of optically nonlinear materials; in the considered system, waveguides with a positive refractive index alternate with waveguides with a negative refractive index. Partial solutions to a system of nonlinear equations describing the evolution of these pulses are found in the case in which fields in adjacent waveguides differ only in the phase factor. For a solitary wave formed by coupled wave packets localized each in its own waveguide, these solutions describe the stationary propagation in a definite direction. It is shown that the coupling strength between waveguides has an effect on the propagation rate of the obtained stationary pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号