首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is shown that the resonant Davey-Stewartson (RDS) system can pass the Painlev test. By truncating the Laurent series to a constant level term, a dependent variable transformation is naturally derived, which leads to the bilinear forms of the RDS system. From the bilinear equations, through making suitable assumptions, some new soliton solutions are obtained. Some representative profiles of the solitary waves are graphically displayed including the two-line soliton solution, “Y” soliton solution, “V” soliton solution, solitoff, etc. The solutions might be useful to describe the nonlinear phenomena in Madelung fluids, capillarity fluids, and so on.  相似文献   

2.
The generalized (2+1)-dimensional KP, cKP and mKP are decomposed into the known (1+1)-dimensional soliton equations. Then, we show that the (1+1)-dimensional soliton equations give rise to the explicit soliton solutions of the generalized KP, cKP and mKP.  相似文献   

3.
Using the F-expansion method, we systematically present exact solutions of the generalized nonlinear nonlinear Schrödinger equation with varying intermodal dispersion and nonlinear gain or loss. This approach allows us to obtain large variety of solutions in terms of Jacobi-elliptical and Weierstrass-elliptical functions. The chirped and unchirped spatiotemporal soliton solutions and trigonometric-function solutions have been also obtained as limiting cases. The dynamics of these spatiotemporal soliton is discussed in context of optical fiber communication. To visualize the propagation characteristics of chirp and unchirped dark-bright soliton solutions, few numerical simulations are given. It is found that wave profile of solitons depend on the group velocity dispersion and the gain or loss functions.  相似文献   

4.
We propose a simple and direct method for generating travelling wave solutions for nonlinear integrable equations. We illustrate how nontrivial solutions for the KdV, the mKdV and the Boussinesq equations can be obtained from simple solutions of linear equations. We describe how using this method, a soliton solution of the KdV equation can yield soliton solutions for the mKdV as well as the Boussinesq equations. Similarly, starting with cnoidal solutions of the KdV equation, we can obtain the corresponding solutions for the mKdV as well as the Boussinesq equations. Simple solutions of linear equations can also lead to cnoidal solutions of nonlinear systems. Finally, we propose and solve some new families of KdV equations and show how soliton solutions are also obtained for the higher order equations of the KdV hierarchy using this method.  相似文献   

5.
Fajun Yu 《Physics letters. A》2008,372(24):4353-4360
In [W.X. Ma, J. Phys. A: Math. Theor. 40 (2007) 15055], Prof. Ma gave a beautiful result (a discrete variational identity). In this Letter, based on a discrete block matrix spectral problem, a new hierarchy of Lax integrable lattice equations with four potentials is derived. By using of the discrete variational identity, we obtain Hamiltonian structure of the discrete soliton equation hierarchy. Finally, an integrable coupling system of the soliton equation hierarchy and its Hamiltonian structure are obtained through the discrete variational identity.  相似文献   

6.
An approximate homotopy direct reduction method is proposed and applied to two perturbed modified Korteweg- de Vries (mKdV) equations with fourth-order dispersion and second-order dissipation. The similarity reduction equations are derived to arbitrary orders. The method is valid not only for single soliton solutions but also for the Painlevd Ⅱ waves and periodic waves expressed by Jacobi elliptic functions for both fourth-order dispersion and second-order dissipation. The method is also valid for strong perturbations.  相似文献   

7.
Fajun Yu 《Physics letters. A》2009,373(41):3730-3733
In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.  相似文献   

8.
Starting from a new discrete iso-spectral problem, we derive a hierarchy of Hamiltonian lattice equations. A Darboux transformation is established for the lattice soliton hierarchy. As applications, the soliton solutions of resulted lattice hierarchy are given.  相似文献   

9.
For a higher-dimensional integrable nonlinear dynamical system, there are abundant coherent soliton excitations. By means of the extended mapping approach, new exact quasi-periodic and non-periodic solutions for the (2+1)-dimensional nonlinear systems are displayed both analytically and graphically.  相似文献   

10.
Attempts are made to look for the soliton content in the exact solutions of certain types of nonlinear diffusion-reaction (DR) equations with the quadratic and cubic nonlinearities. Such equations may arise in a variety of contexts in physical problems. In this Letter using the auxiliary equation method, some new solitary and travelling wave solutions of such nonlinear DR equations are obtained in a very general form. Several interesting special cases of these general solutions are also discussed.  相似文献   

11.
吴勇旗 《中国物理快报》2008,25(8):2739-2742
One- and two-periodic wave solutions for (3+l)-dimensional Boussinesq equation are presented by means of Hirota's bilinear method and the Riemann theta function. The soliton solution can be obtained from the periodic wave solution in an appropriate limiting procedure.  相似文献   

12.
The bilinear form of a coupled modified KdV equations with non-uniformity terms is given and a few soliton solutions are obtained. Furthermore, the multisoliton of the coupled system is expressed by Pfaffian.  相似文献   

13.
The solution of the perturbed KdV equation (PKDVE), when the zero-order approximation is a multiple-soliton wave, is constructed as a sum of two components: elastic and inelastic. The elastic component preserves the elastic nature of soliton collisions. Its perturbation series is identical in structure to the series-solution of the PKDVE when the zero-order approximation is a single soliton. The inelastic component exists only in the multiple-soliton case, and emerges from the first order and onwards. Depending on initial data or boundary conditions, it may contain, in every order, a plethora of inelastic processes. Examples are given of sign-exchange soliton-anti-soliton scattering, soliton-anti-soliton creation or annihilation, soliton decay or merging, and inelastic soliton deflection. The analysis has been carried out through third order in the expansion parameter, exploiting the freedom in the expansion to its fullest extent. Both elastic and inelastic components do not modify soliton parameters beyond their values in the zero-order approximation. When the PKDVE is not asymptotically integrable, the new expansion scheme transforms it into a system of two equations: The Normal Form for ordinary KdV solitons, and an auxiliary equation describing the contribution of obstacles to asymptotic integrability to the inelastic component. Through the orders studied, the solution of the latter is a conserved quantity, which contains the dispersive wave that has been observed in previous works.  相似文献   

14.
A new approach to the perturbative analysis of dynamical systems, which can be described approximately by soliton solutions of integrable non-linear wave equations, is employed in the case of small-amplitude solutions of the ion acoustic wave equations of plasma physics. Instead of pursuing the traditional derivation of a perturbed KdV equation, the ion velocity is written as a sum of two components: elastic and inelastic. In the single-soliton case, the elastic component is the full solution. In the multiple-soliton case, it is complemented by the inelastic component. The original system is transformed into two evolution equations: An asymptotically integrable Normal Form for ordinary KdV solitons, and an equation for the inelastic component. The zero-order term of the elastic component is a single-soliton or multiple-soliton solution of the Normal Form. The inelastic component asymptotes into a linear combination of single-soliton solutions of the Normal Form, with amplitudes determined by soliton interactions, plus a second-order decaying dispersive wave. Satisfaction of a conservation law by the inelastic component and of mass conservation by the disturbance to the ion density is determined solely by the initial data and/or boundary conditions imposed on the inelastic component. The electrostatic potential is a first-order quantity. It is affected by the inelastic component only in second order. The charge density displays a triple-layer structure. The analysis is carried out through the third order.  相似文献   

15.
The multiple soliton solutions of the approximate equations for long water waves and soliton-like solutions for the dispersive long-wave equations in 2+1 dimensions are constructed by using an extended homogeneous balance method. Solitary wave solutions are shown to be a special case of the present results. This method is simple and has a wide-ranging practicability, and can solve a lot of nonlinear partial differential equations.  相似文献   

16.
In this Letter, an inverse scattering method is developed for the isospectral Vakhnenko equation, and the general N-solution is presented. Using this technique, a typical self-confined solitary wave hereafter named soliton, satisfying some vanishing boundary conditions is elicited. The detail on the scattering behavior of such structures including their phase shifts is outlined. This method is presented to be arguably more simple, tractable and straightforward than that recently investigated by Vakhnenko and Parkes [V.O. Vakhnenko, E.J. Parkes, Chaos Solitons Fractals 13 (2002) 1819] while solving the same equation. As a result, it is shown that when two single soliton solutions with ‘similar’ or ‘dissimilar’ amplitudes collide, there may be two types of features depending on the ratio of the two eigenvalues involved. It is then suggested an existence of some critical value for the ratio of the two eigenvalues at which the collision process changes its characteristic features.  相似文献   

17.
The Darboux transformation of a differential-difference equation associated with a 3 × 3 matrix spectral problem is derived. As an application, explicit soliton solutions of the differential-difference equation are presented.  相似文献   

18.
吴建平 《中国物理快报》2008,25(12):4192-4194
Considering the bilinear form of a (3+1)-dimensional soliton equation, we obtain a bilinear Backlund transformation for the equation. As an application, soliton solution and stationary rational solution for the (3+1)- dimensional soliton equation are presented.  相似文献   

19.
The Painlevé integrability of the 2+1 dimensional AKNS system is proved. Using the standard truncated Painlevé expansion which corresponds to a special B?cklund transformation, some special types of the localized excitations like the solitoff solutions, multi-dromion solutions and multi-ring soliton solutions are obtained. Received 31 January 2001 and Received in final form 15 May 2001  相似文献   

20.
The use of the sine-Gordon equation as a model of magnetic flux propagation in Josephson junctions motivates studying the initial-value problem for this equation in the semiclassical limit in which the dispersion parameter ε tends to zero. Assuming natural initial data having the profile of a moving −2π kink at time zero, we analytically calculate the scattering data of this completely integrable Cauchy problem for all ε>0 sufficiently small, and further we invert the scattering transform to calculate the solution for a sequence of arbitrarily small ε. This sequence of exact solutions is analogous to that of the well-known N-soliton (or higher-order soliton) solutions of the focusing nonlinear Schrödinger equation. We then use plots obtained from a careful numerical implementation of the inverse-scattering algorithm for reflectionless potentials to study the asymptotic behavior of solutions in the semiclassical limit. In the limit ε0 one observes the appearance of nonlinear caustics, i.e. curves in space-time that are independent of ε but vary with the initial data and that separate regions in which the solution is expected to have different numbers of nonlinear phases.In the appendices, we give a self-contained account of the Cauchy problem from the perspectives of both inverse scattering and classical analysis (Picard iteration). Specifically, Appendix A contains a complete formulation of the inverse-scattering method for generic L1-Sobolev initial data, and Appendix B establishes the well-posedness for Lp-Sobolev initial data (which in particular completely justifies the inverse-scattering analysis in Appendix A).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号