首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermoluminescence (TL) and Electron Paramagnetic Resonance (EPR) dosimetry were used to measure dose effects in borosilicate glass with time, from 10 min to 60 days following exposure to a dose of up to 100 Gy. TL and EPR results were consistent and performed similarly, with both techniques capable of achieving an estimated limit of detection of between 0.5 and 1 Gy. Three peaks were identified in the TL glow curve at roughly 110 °C, 205 °C, and 225 °C. The intensity of the 205 °C peak was the dominant peak over the time period of this study. The stability of all of the peaks with time since irradiation increased with their corresponding temperature and no significant variation was observed in the glow curve response to a specified total dose attained at different dose rates. The intensity of the 205 °C peak decreased logarithmically with time regardless of total dose. Based upon a conservative limit of detection of 3.3 Gy, a 100 Gy dose would still be detected 2.7E3 years after exposure. Here, we introduce the concept of intrinsic dosimetry, the measurement of the total absorbed dose received by the walls of a container containing radioactive material. The foreseen advantage of intrinsic dosimetry comes from considering the measured absorbed dose received by containers in concert with the characteristics (amount, type) of the source of that dose, the radioactive material contained within the walls of the container, in order to provide enhanced information about the history of an unknown sample in question. Three hypothetical scenarios are presented to introduce this method and to illustrate how intrinsic dosimetry might benefit the fields of nuclear forensics and waste management.  相似文献   

2.
玻璃固化体作为放射性废物地质处置的第一道安全屏障,它的耐辐照性能研究至关重要.玻璃固化体主要网络结构硅氧四面体与石英玻璃的硅氧四面体是一致的,所以这里用石英玻璃代替玻璃固化体作为研究对象.本文采用Xe离子在相同条件下辐照石英玻璃和硼硅酸盐玻璃.利用纳米压痕技术和椭圆偏振仪表征了辐照前后样品的硬度、模量以及折射率的变化情况.结果表明:硼硅酸盐玻璃和石英玻璃的硬度均随着辐照剂量的增大而减小,硼硅酸盐玻璃的模量随着辐照剂量的增大而减小;石英玻璃的模量随着辐照剂量的增大而增大.模量的变化可能和密度的变化有关,这点与折射率的结果相符.  相似文献   

3.
Seventeen domestic and scientific glass specimens were investigated for thermoluminescence (TL) properties suitable for application to retrospective population dosimetry. Usefulness for retrospective dosimetry was initially judged by the presence of well-defined TL glow peaks and the absence of irradiation-independent luminescence. Of particular interest were TL glow peaks having relatively low trap depths, to prevent significant natural dose accumulation. Minimum useful trap lifetimes would be in the order of weeks. Surveys were undertaken to observe the TL and optically stimulated luminescence (OSL) behaviour of each sample. Most samples showed identifiable TL, with Pyrex in particular, and samples from a jar, a lampshade, and opaque blue beads all showing well-defined TL glow peaks with sensitivities that were not significantly affected by prior irradiation and heating of the sample. Kinetic analysis of these samples showed that their TL emission originates from traps with suitable stability for retrospective dosimetry. It is concluded that, while some glass samples show promising results, the inherent variability of an amorphous substance such as glass means that the suitability of each sample must be determined on a case-by-case basis.  相似文献   

4.
Drug sterilization with ionizing radiation is a well-established technology, which is gaining ground the last decades since it allows the adequate sterilization of heat-sensitive pharmaceutical preparations. In a previous study (Kazakis et al., 2015a), the possibility to identify irradiated liquid-state drugs by means of TL measurements on their glass containers was explored with very promising findings.The present work constitutes a continuation and extension of the previous work, employing additional TL measurements, along with new OSL measurements, on the same glass containers of two widely used liquid drugs, (Hexalen® and Voltaren®), for beta-doses up to 30 kGy, while an investigation of the presence of very deep traps (VDT), i.e., traps with their peak maximum temperature beyond the 500 °C, also took place.Results indicate that dose estimation, after the ionizing sterilization of a liquid drug, using the glass containers is possible in many ways. Both direct OSL and TL dose response can be fitted with a linear function for doses up to 6 kGy and 14 kGy for Hexalen and Voltaren respectively. For higher doses, up to 30 kGy, the intensity continues to increase, though in a lower rate, and the response can be fitted with a linear function as well, indicating that no saturation is reached. Presence of VDT is evident in both glasses with their thermally assisted OSL (TA-OSL) and subsequent photo-transferred residual TL (RTL) dose response exhibiting linear behavior in two distinctive dose areas. In any case, no saturation of the VDT is observed for doses up to 25 kGy. The above is very important, since it would allow the estimation of the sterilization dose even if the glass container has been exposed to light or heated to temperatures up to 500 °C.Thus, all findings are very promising and support the idea of using the glass containers of commercial liquid drugs as probes for the post-sterilization dosimetry of these drugs and for normal and/or accidental dosimetry.  相似文献   

5.
Touchscreen glasses of mobile phones are sensitive to ionizing radiation and have the potential of usage as an emergency dosimeter for retrospective dosimetry for the purpose of triage after a radiological accident or attack. In this study the TL glow curves and dosimetric properties of touchscreen glasses were studied in detail, such as intrinsic background dose, dose response, reproducibility, optical stability and long-term stability of the TL signal.Preliminary results are additionally presented to minimize the intrinsic background dose by mechanically removing the surface layer of the glass samples. Additionally chemical element analyses of the touchscreen glass samples were carried out to investigate the difference between glass samples which show a TL signal and samples which show neither an intrinsic zero dose signal nor a radiation induced TL signal.An irradiation trial using glass samples stored in the dark demonstrated a successful dose recovery. However, when applying a realistic, external light exposure scenario, dose underestimation was observed, even though samples were pre-bleached prior to measurement. More investigations have to be carried out in the future to solve the challenge of the low optical stability of the TL signal, if touchscreen glasses are to be used as a reliable emergency dosimeter.  相似文献   

6.
7.
We report on the application of the single-aliquot regenerative-dose (SAR) protocol to the optically stimulated luminescence signal from quartz extracted from fired bricks and unfired mortar in retrospective dosimetry. The samples came from a radioactive materials storage facility, with ambient dose rates of about 0.1 mGy/h. A detailed dose-depth profile was analysed from one brick, and compared with dose records from area TL dosemeters. Small-aliquot dose-distributions were analysed from the mortar samples; one associated with the exposed brick, and one from a remote site exposed only to background radiation. We conclude that unfired materials have considerable potential in retrospective dosimetry.  相似文献   

8.
对中国聚变工程实验堆(CFETR)氦冷陶瓷产氚包层放射性废物包装容器进行了屏蔽设计。分析了CFETR氦冷陶瓷包层放射源项特点,阐述了容器屏蔽厚度的计算模型,使用蒙特卡罗程序MCNP5计算容器表面剂量率。结果表明包装容器表面剂量率与容器厚度之间呈现指数衰减关系。再根据中国现行标准,给出普通碳钢材料和普通碳钢-铅夹层材料两种方案。  相似文献   

9.
This paper reviews recent research on the application of the physical dosimetry techniques of electron paramagnetic resonance (EPR) and luminescence (optically stimulated luminescence, OSL, and thermoluminescence, TL) to determine radiation dose following catastrophic, large-scale radiological events. Such data are used in dose reconstruction to obtain estimates of dose due to the exposure to external sources of radiation, primarily gamma radiation, by individual members of the public and by populations. The EPR and luminescence techniques have been applied to a wide range of radiological studies, including nuclear bomb detonation (e.g., Hiroshima and Nagasaki), nuclear power plant accidents (e.g., Chernobyl), radioactive pollution (e.g., Mayak plutonium facility), and in the future could include terrorist events involving the dispersal of radioactive materials. In this review we examine the application of these techniques in ‘emergency’ and ‘retrospective’ modes of operation that are conducted on two distinct timescales. For emergency dosimetry immediate action to evaluate dose to individuals following radiation exposure is required to assess deterministic biological effects and to enable rapid medical triage. Retrospective dosimetry, on the other hand, contributes to the reconstruction of doses to populations and individuals following external exposure, and contributes to the long-term study of stochastic processes and the consequential epidemiological effects. Although internal exposure, via ingestion of radionuclides for example, can be a potentially significant contributor to dose, this review is confined to those dose components arising from exposure to external radiation, which in most studies is gamma radiation.The nascent emergency dosimetry measurement techniques aim to perform direct dose evaluations for individuals who, as members of the public, are most unlikely to be carrying a dosimeter issued for radiation monitoring purposes in the event of a radiation incident. Hence attention has focused on biological or physical materials they may have in their possession that could be used as surrogate dosimeters. For EPR measurements, in particular, this includes material within the body (such as bone or tooth biopsy) requiring invasive procedures, but also materials collected non-invasively (such as clippings taken from finger- or toenails) and artefacts within their personal belongings (such as electronic devices of which smart phones are the most common). For luminescence measurements, attention has also focused on components within electronic devices, including smartphones, and a wide range of other personal belongings such as paper and other polymer-based materials (including currency, clothing, bank cards, etc.). The paper reviews progress made using both EPR and luminescence techniques, along with their current limitations.For the longer-established approach of retrospective dosimetry, luminescence has been the most extensively applied method and, by employing minerals found in construction materials, it consequently is employed in dosimetry using structures within the environment. Recent developments in its application to large-scale radiation releases are discussed, including the atomic bomb detonations at Hiroshima and Nagasaki, fallout from the Chernobyl reactor and atmospheric nuclear bomb tests within the Semipalatinsk Nuclear Test Site and fluvially transported pollution within the Techa River basin due to releases from the Mayak facility. The developments made in applying OSL and TL techniques are discussed in the context of these applications. EPR measurements with teeth have also provided benchmark values to test the dosimetry models used for Chernobyl liquidators (clean-up workers), residents of Semipalatinsk Nuclear Tests Sites and inhabitants of the Techa River basin.For both emergency and retrospective dosimetry applications, computational techniques employing radiation transport simulations based on Monte Carlo code form an essential component in the application of dose determinations by EPR and OSL to dose reconstruction problems. We include in the review examples where the translation from the physical quantity of cumulative dose determined in the sampled medium to a dose quantity that can be applied in the reconstruction of dose to individuals and/or populations; these take into account the source terms, release patterns and the movements of people in the affected areas. One role for retrospective luminescence dosimetry has been to provide benchmark dose determinations for testing the models employed in dose reconstruction for exposed populations, notably at Hiroshima and Nagasaki. The discussion is framed within the context of the well-known radiation incidents mentioned above.  相似文献   

10.
During 1949–1956, the plutonium production facility Mayak released large quantities of radioactive waste into the Techa river. As a result, a contamination of the river system occurred, and the population of the riverside villages was exposed to external and internal irradiation. Currently, the problem of dose assessment must be solved to make correct risk estimations using the information on long-term epidemiological observations from the URCRM database. TL measurements are an important part of this work. The method of TL dating of ancient pottery and geological objects originally developed in the late 1960s was modified for retrospective dosimetry using environmental materials such as bricks, from procedures developed at Moscow State University. Special investigations were carried out for correct dose estimations in quartz extracted from different layers of brick samples. A number of brick samples were collected from a few buildings that remained in the village of Metlino which was situated 7 km below the point of release and was demolished in 1956. The accrued doses in quartz extracted from the outer centimeter of the bricks ranged from 0.76 to 5.28 Gy. The highest doses were measured in the samples from a wall of the mill located near the river bank.  相似文献   

11.
Erasure of the thermoluminescence (TL) signal on detector readout is considered to be a disadvantage of TL dosimetry, as post-readout dose reassessment is then impossible in principle. A method of dose reassessment based on phototransferred thermoluminescence (PTTL) has been developed at the Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN) and applied to MTS-N (LiF:Mg,Ti) detectors. We demonstrate the possibility of applying PTTL for dose reassessment in MTS-N TL detectors routinely applied in the dosimetric service at IFJ PAN. Readings of TL detectors exposed to relatively high doses by the customers of our dosimetry service can now be reassessed using our automatic readers. A major obstacle in applying the PTTL method at lower exposures is the presence of residual dose accumulated in LiF:Mg,Ti detectors after many field exposure and readout cycles. Since most of the TL detectors in our service have been already used for a long time (e.g. for over 10 years in the case of some detector batches), we find that our PTTL method of dose reassessment is possible only in detectors which had received doses exceeding 5 mSv.  相似文献   

12.
The radioluminescence (RL) of carbon doped aluminium oxide (Al2O3:C) TL dosimeter material (TLD-500) was investigated using a 137Cs conversion electron source (which also emits β and γ) for simultaneous irradiation and luminescence excitation. Furthermore, RL dosimetry characteristics of this material were studied. The main RL emission occurs at 420 nm. That matches the known main TL and OSL emissions for this material as well as an emission that was investigated in earlier RL studies, excited at higher energies (4 MeV electrons) and very high pulse delivered doses (≈800 kGy·s−1). Furthermore, the saturation dose for the main peak is reached at the dose level of ≈80 Gy as known from TL and earlier RL investigations. Other peaks at 700 and 790 nm and broad emission bands at photon energies higher than 3.00 eV and others between 2.00 and 2.50 eV were observed. The 700 nm emission shows growth also at higher dose levels, and saturates at an estimated dose of ≈800 Gy. The 790 nm emission reaches its maximum intensity at ≈10 Gy absorbed dose. The reported results give an outlook to the usability and the potential of Al2O3:C combined with RL measurements for radiation dosimetry as well as for beta source calibration, using radioluminescence.  相似文献   

13.
The influence of dopant TiO2 and co-dopant MgO on the thermoluminescence (TL) properties of lithium potassium borate glass (LKB) is reported in this paper. The glow curve exhibits a prominent peak (Tm) at 230 °C. The TL intensity was enhanced by a factor of ~3 due to the incorporation of MgO, and this was attributed to the creation of extra electron traps mediated by radiative recombination energy transfer. We achieved good linearity of the TL yield with dose, low fading, excellent reproducibility and a promising effective atomic number (Zeff=8.89), all of which are highly suitable for dosimetry. The effect of heating rate, sunlight and dose rate on the TL are also examined. These attractive features demonstrate that our dosimeter is useful in medical radiation therapy.  相似文献   

14.
Magnesium tetraborate (MTB) doped with rare earth elements were synthesized by solid state sintering technique. Among the different rare earth dopants studied in this phosphor, gadolinium doped phosphors resulted in a single intense dosimetric peak at 250 °C and this is the first report in rare earth-doped MgB4O7 with a glow peak above 200 °C Photoluminescence (PL) and thermoluminescence (TL) studies were performed with this phosphor after exposing the powder samples to ionizing radiation. Monovalent dopants, including Na, Li and Ag, were found to increase the TL sensitivity of the MgB4O7:Gd phosphor without a shift in the TL peak temperature. The TL emission spectra showed characteristic emission of the host lattice, which showed an increase on doping with rare earth or monovalent codopants. The TL sensitivity, dose response curve, and post-irradiation storage stability were studied for the possible use of this material in radiation dosimetry applications. The TL parameters, such as the activation energy, the frequency factor, and the order of kinetics were determined for the Gd-doped MgB4O7 phosphor. The phosphor was found to be reusable after a few cycles of irradiation and annealing. The post-irradiation storage stability studies showed that this near tissue-equivalent phosphor, which has a gamma sensitivity five times that of TLD-100, is suitable for medical dosimetry applications.  相似文献   

15.
玻璃固化体是用来固化放射性废物的硅酸盐。作为放射性废物处理的第一道工程屏障,它的耐辐照性能尤其引人注目。本工作使用硼硅酸盐玻璃模拟玻璃固化体材料,用不同剂量的γ射线辐照硼硅酸盐玻璃模拟天然放射性对固化体的辐照损伤。通过测量和分析辐照后硼硅酸盐玻璃的吸收光谱,证实了辐照后在玻璃中产生了E'缺陷,非桥氧空位色心、过氧自由基以及过桥氧联接等缺陷。此外,还得出了不同微观结构随吸收剂量的演化关系。对于辐照后产生的缺陷,它们的浓度都随吸收剂量的增加而增大。同时,发现玻璃在辐照后其吸收光谱的带隙随着剂量的增加而逐渐变窄;而当吸收剂量大于等于105 Gy时,玻璃的带隙则达到饱和值。Vitrification is one kind of silicates which is used for immobilization of high-level waste (HLW). As the first engineered barrier of HLW disposition, its anti-irradiation characteristic is particularly noticeable. Vitrification is replaced by borosilicate glass to investigate radiation effect, and the irradiation damage generated by natural radioactivity in vitrification is simulated by different doses gamma rays on borosilicate glass. By measuring and analyzing the absorption spectrum of irradiated borosilicate glasses, it is confirmed that E'defect, non-bridging oxygen hole center, peroxy dangling bond and bridge oxygen link, etc. are induced in borosilicate glass after irradiation. Furthermore, the relations between the defects and absorbed doses are shown. For the concentrations of these defects induced by irradiation, all of them increase with absorbed dose. Meanwhile, absorption band gap in borosilicate glass after irradiation decreases with absorbed dose and the band gap becomes saturated when absorbed dose is equal to or greater than 105 Gy.  相似文献   

16.
The thermoluminescent (TLD) method is one of the most commonly used in dose measurements in radiation protection dosimetry. Due to its many advantages this method is widely spread. However, TLD has especially one disadvantage which is very inconvenient: the dose information in already read detectors is erased and in routine standard way the dose can not be reassessed. The positive is that this shortcoming can be eliminated by applying UV radiation. After first readout the same detector can be subjected to UV exposure and then read once again to reassess the dose.This method for reassessment of dose is based on phototransferred thermoluminescence (PTTL). In an irradiated TL detector deep traps are not emptied during the first readout. During exposure to UV, electrons are transferred from deep traps to shallower dosimetric traps. This TL signal emerging during the second readout following UV illumination is called phototransferred thermoluminescence.A method for reassessment of dose in a previously readout TLD is presented in this work. Experiments show that the method works well within region of doses between 5 and 50 mGy, but could be applied for higher doses as well. The efficiency of dose reassessment reaches about 17 percent of the first readout.The method could be a noticeable improvement in TLD dosimetry, giving more opportunities for better control and reliability of measurements.  相似文献   

17.
李欣  赵强  郝建红  董志伟  薛碧曦 《强激光与粒子束》2020,32(2):025024-1-025024-6
作为航天器电源系统的重要组成部分,太阳电池需要更高的转换效率和可靠性以及更长的使用寿命。通过在太阳电池表面覆盖抗辐照玻璃盖片,可以增强太阳电池对粒子辐射的防护,延长太阳电池的服役寿命,使航天器获得可靠的能源供应。硼硅酸盐玻璃就是一种理想的太阳电池玻璃盖片材料。采用蒙特卡罗方法,结合SRIM软件模拟研究质子辐照硼硅酸盐玻璃的损伤物理机理。基于粒子与物质相互作用的理论以及基本公式,通过分析不同入射能量的质子在硼硅酸盐玻璃中的阻止本领、电离能损、位移能损、空位的产生情况,对辐照损伤的物理机制进行研究。结果表明:能量为30~120 keV的质子辐照损伤主要发生在硼硅酸盐玻璃表面;质子沉积、空位分布等均为Bragg峰型分布;电离能损是能量损失的主要部分,随入射能量的增加而增大,导致电子的电离和激发;位移能损在玻璃内部随能量降低而增大,导致硼、氧和硅等空位缺陷的产生;电离效应和缺陷的产生是硼硅酸盐玻璃色心形成的重要原因。  相似文献   

18.
Optically Stimulated Luminescence (OSL) and Thermoluminescence (TL) properties of a fluorapatite glass-ceramic have been investigated, with a view to developing a dose assessment technique for medical triage following unplanned exposures of individuals to ionizing radiation. The ceramic is an innovative material used in dental prostheses and restorations. It is strongly sensitive to radiation and the intensity of both the OSL and TL signals are proportional to the absorbed radiation dose. We focused on the optimization of the measuring procedure and investigated characteristics such as reproducibility, fading, minimum detectable dose (MDD), dose response and photon energy response of TL and OSL signals. The dental ceramic exhibited very good reproducibility (<5% at 2σ level) when measured and a linear dose response for a wide range of doses (50 mGy–20 Gy). The MDD values for the samples investigated were ∼5 mGy. The material is not tissue equivalent and the OSL and TL signals are strongly dependent on incident photon energy. Both the luminescence signals exhibited significant fading during the first few hours after irradiation. Its rate was dependent on the parameters of measurement. The results indicate that the material can be used for the purposes of accident dosimetry, however, the fading and photon energy response have to be properly corrected for a reliable dose assessment.  相似文献   

19.
The state-of-the-art in the use of thermoluminescence for the measurement of energy imparted by ionizing radiation is discussed. Emphasis is on the advantages obtainable by the use of computerized glow curve analysis in (i) quality control, (ii) low dose environmental dosimetry, (iii) medical applications (especially precision) and microdosimetric applications, and (iv) mixed field ionization-density–dosimetry. Possible frontiers of future research are highlighted: (i) vector representation in glow curve analysis, (ii) combined OSL/TL measurements, (iii) detection of sub-ionization electrons, (iv) requirements for new TL materials and (v) theoretical subjects involving kinetic modeling invoking localized/delocalized recombination applied to dose response and track structure theory including creation of defects.  相似文献   

20.
This paper presents the main thermoluminescence (TL) dosimetric characteristics of commercial Turkish transparent window glass. The structure of the glow curves, including the number of peaks, was found to be dose-dependent. A low-temperature glow peak that at 160 °C shifts to higher temperatures was also observed with increasing storage time at room temperature. This result suggests that this TL glow peak is actually made up of two or more overlapping peaks. These we have attributed to the glow peaks at lower temperatures, which decay faster than the ones at higher temperatures with storage time. The thermal fading of the window glass sample at room temperature showed a relatively sharp decay of about 60% occurring over a period of 28 days, after which the decay rate is small for a measured period of 250 days. In order to the improve the post-irradiation stability of the glow curve, the glass samples were heated after irradiation. To remove the unstable TL peaks responsible for the initial rapid fading, post-irradiation heating at 160 °C for 10 min was found to be the most suitable procedure. The dosimetric characteristics of the post-irradiation heated window glass examined in this study include fading, gamma photon dose-response, reproducibility, batch sensitivity, humidity influence, a dose-rate effect and photon energy response. Dose-response was found to be appropriate for dosimetry in the range 5 Gy to 10 kGy. The post-irradiation heating procedure did not affect the main dosimetric characteristics of the window glass samples. The results in this work suggest that the materials could, by using the TL technique, be a suitable candidate for alternative dose measurements in radiation processing, provided that a judicious choice of the post-irradiation heat temperature is made to minimize fading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号