首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyze the classical and quantum correlation properties of the standard and so-called quasiclassical depolarizing channel with correlated noise and non-Markovian dephasing channel, specifically we use the quantum discord, entanglement, and measurement-induced disturbance (MID) to measure the quantum correlations. For the depolarizing channel, we find that the memory effect has more influence on the MID and quantum discord than entanglement. For the dephasing channel, we show that the non-Markovian dephasing channel is more robust than Markovian dephasing channel against deeoherence. We also find that at first MID and quantum discord take different values, and then after a specific time they will take almost the same value and both decay monotonically in the same way.  相似文献   

2.
《中国物理 B》2021,30(7):70307-070307
We investigate the nonlocal advantage of quantum coherence(NAQC) and entanglement for two spins coupled via the Heisenberg interaction and under the intrinsic decoherence. Solutions of this decoherence model for the initial spin-1/2 and spin-1 maximally entangled states are obtained, based on which we calculate the NAQC and entanglement. In the weak region of magnetic field, the NAQC behaves as a damped oscillation with the time evolves, while the entanglement decays exponentially(behaves as a damped oscillation) for the spin-1/2(spin-1) case. Moreover, the decay of both the NAQC and entanglement can be suppressed significantly by tuning the magnetic field and anisotropy of the spin interaction to some decoherence-rate-determined optimal values.  相似文献   

3.
Huan Yang 《中国物理 B》2022,31(9):90302-090302
The important applications of quantum dot system are to implement logic operations and achieve universal quantum computing based on different quantum nonlocalities. Here, we characterize the quantum steering, Bell nonlocality, and nonlocal advantage of quantum coherence (NAQC) of quantum dot system suffering nonunital and unital channels. The results reveal that quantum steering, Bell nonlocality, and NAQC can display the traits of dissipation, enhancement, and freezing. One can achieve the detections of quantum steering, Bell nonlocality, and NAQC of quantum dot system in different situations. Among these quantum nonlocalities, NAQC is the most fragile, and it is most easily influenced by different system parameters. Furthermore, considering quantum dot system coupling with amplitude damping channel and phase damping channel, these quantum nonlocalities degenerate with the enlargement of the channel parameters $t$ and $\varGamma$. Remarkably, measurement reversal can effectively control and enhance quantum steering, Bell nonlocality, and NAQC of quantum dot system suffering from decoherence, especially in the scenarios of the amplitude damping channel and strong operation strength.  相似文献   

4.
We study a dephasing channel with memory, modelled by a multimode environment of oscillators. Focusing on the case of two channel uses, we show that memory effects can enhance the amount of coherent quantum information transmitted down the channel. We also propose a coding-decoding scheme that takes advantage of memory to improve the fidelity of transmission.  相似文献   

5.
We propose two schemes for quantum secure direct communication (QSDC) and deterministic secure quantum communication (DSQC) over collective dephasing noisy channel. In our schemes, four special two-qubit states are used as the quantum channel. Since these states are unchanged through the collective dephasing noisy channel, the effect of the channel noise can be perfectly overcome. Simultaneously, the security against some usual attacks can be ensured by utilizing the various checking procedures. Furthermore, these two schemes are feasible with present-day technique.  相似文献   

6.
We study entanglement properties of two-mode squeezed thermal states subjected to two sources of decoherence: the common reservoirs and the bosonic memory Gaussian channel. For the former one, we find that there exist three different behaviors: no-sudden death, sudden death, and no-creation of entanglement. The range of parameters characterizing these processes is obtained. For the latter one, we obtain a threshold in the degree of squeezing above which the input states remain always entangled. Otherwise, no entanglement is allowed in bosonic Gaussian channel with memory effect. We show that a degree of memory for quantum channel can be help to increase the initial entanglement, while the mean number of added thermal photons is to fasten the decoherence process.  相似文献   

7.
We present a robust (n, n)-threshold scheme for multiparty quantum secret sharing of key over two collectivenoise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-photon mixed states, In our scheme, only if all the sharers collaborate together can they establish a joint key with the message sender and extract the secret message from the sender's encrypted message. This scheme can be implemented using only a Bell singlet, a one-qubit state and polarization identification of single photon, so it is completely feasible according to the present-day technique.  相似文献   

8.
詹云  陈小余 《中国物理 B》2013,22(1):10308-010308
We study the performances of quantum channel adaptive [4,1] code transmitting in a joint amplitude damping and dephasing channel, the [6,2] code transmitting in an amplitude damping channel by combining the encoding, noise process, and decoding as one effective channel. We explicitly obtain the entanglement fidelities. The recovery operators of the [6,2] code are given. The performance is nearly optimal compared with that of the optimal method of semidefinite programming.  相似文献   

9.
We propose a scheme for the implementation of remote controlled-NOT gates and entanglement swapping via geometric phase gates in ion-trap systems. The proposed scheme uses the two ground states of the A-type ions as memory instead of the vibrational mode. And the system is robust against the spontaneous radiation and the dephasing.  相似文献   

10.
杨榕灿 《物理学报》2008,57(1):180-184
We propose a scheme for the implementation of remote controlled-NOT gates and entanglement swapping via geometric phase gates in ion-trap systems. The proposed scheme uses the two ground states of the $\Lambda$-type ions as memory instead of the vibrational mode. And the system is robust against the spontaneous radiation and the dephasing.  相似文献   

11.
The entanglement evolution of two qubits in local, two-sided non-Markovian pure dephasing channels is investigated. It is found that for the two-sided pure dephasing channel case, when the qubits are initially prepared in a general class of states, whether pure or mixed, the entanglement can be expressed as the products of initial entanglement and the channels? action on the maximally entangled state. This provide us a good approximation to characterize the entanglement dynamics of arbitrary states to some extent.  相似文献   

12.
We investigate the influences of non-Markovian dissipation and global dephasing process on the dynamical behaviors of global discord among four qubits.We find that for the non-Markovian dissipation model W state is the most robust to decoherence compared to Dicke and GHZ states;however,for the global dephasing model Dicke state is the most robust to decoherence among them.Also the dynamical behaviors of global quantum discord are quite different from that of the multipartite entanglement for the non-Markovian dissipation model,while they are very similar to each other for the global dephasing model.  相似文献   

13.
An electronic Mach-Zehnder interferometer is used in the integer quantum Hall regime at a filling factor 2 to study the dephasing of the interferences. This is found to be induced by the electrical noise existing in the edge states capacitively coupled to each other. Electrical shot noise created in one channel leads to phase randomization in the other, which destroys the interference pattern. These findings are extended to the dephasing induced by thermal noise instead of shot noise: it explains the underlying mechanism responsible for the finite temperature coherence time tau_{phi}(T) of the edge states at filling factor 2, measured in a recent experiment. Finally, we present here a theory of the dephasing based on Gaussian noise, which is found to be in excellent agreement with our experimental results.  相似文献   

14.
In the field of quantum information,the acquisition of information for unknown quantum states is very important.When we only need to obtain specific elements of a state density matrix,the traditional quantum state tomography will become very complicated,because it requires a global quantum state reconstruction.Direct measurement of the quantum state allows us to obtain arbitrary specific matrix elements of the quantum state without state reconstruction,so direct measurement schemes have obtained...  相似文献   

15.
We study the effect of decoherence on quantum Monty Hall problem under theinfluence of amplitude damping, depolarizing, and dephasing channels. It isshown that under the effect of decoherence, there is a Nash equilibrium ofthe game in case of depolarizing channel for Alice's quantum strategy.Whereas in case of dephasing noise, the game is not influenced by thequantum channel. For amplitude damping channel, Bob's payoffs are foundsymmetrical about a decoherence of 50% and the maximum occurs at this value of decoherence for his classical strategy. However, it is worth-mentioning that in case of depolarizing channel, Bob's classical strategy remains always dominant against any choice of Alice's strategy.  相似文献   

16.
We study a generic problem of dissipative quantum mechanics, a small local quantum system with discrete states coupled in an arbitrary way (i.e. not necessarily linear) to several infinitely large particle or heat reservoirs. For both bosonic or fermionic reservoirs we develop a quantum field-theoretical diagrammatic formulation in Liouville space by expanding systematically in the reservoir-system coupling and integrating out the reservoir degrees of freedom. As a result we obtain a kinetic equation for the reduced density matrix of the quantum system. Based on this formalism, we present a formally exact perturbative renormalization group (RG) method from which the kernel of this kinetic equation can be calculated. It is demonstrated how the nonequilibrium stationary state (induced by several reservoirs kept at different chemical potentials or temperatures), arbitrary observables such as the transport current, and the time evolution into the stationary state can be calculated. Most importantly, we show how RG equations for the relaxation and dephasing rates can be derived and how they cut off generically the RG flow of the vertices. The method is based on a previously derived real-time RG technique [1-4] but formulated here in Laplace space and generalized to arbitrary reservoir-system couplings. Furthermore, for fermionic reservoirs with flat density of states, we make use of a recently introduced cutoff scheme on the imaginary frequency axis [5] which has several technical advantages. Besides the formal set-up of the RG equations for generic problems of dissipative quantum mechanics, we demonstrate the method by applying it to the nonequilibrium isotropic Kondo model. We present a systematic way to solve the RG equations analytically in the weak-coupling limit and provide an outlook of the applicability to the strong-coupling case.  相似文献   

17.
Image-potential states in front of a clean Cu (100) surface were investigated by time- and angle-resolved two-photon photo-emission (2PPE). We observe a previously unknown quasi-elastic relaxation channel, which efficiently couples states with different quantum numbers, n, and parallel momenta, k. This process of resonant interband scattering (RIS) is independent of sample temperature and shows a close relationship to the pure dephasing of image-potential states. Received: 1 October 2001 / Revised version: 24 October 2001 / Published online: 23 November 2001  相似文献   

18.
We provide a measure to characterize the non-Gaussianity of phase-space function of bosonic quantum states based on the cumulant theory. We study the non-Gaussianity dynamics of two-mode squeezed number states by analyzing the phase-averaged kurtosis for two different models of decoherence: amplitude damping model and phase damping model.For the amplitude damping model, the non-Gaussianity is very fragile and completely vanishes at a finite time. For the phase damping model, such states exhibit rich non-Gaussian characters. In particular, we obtain a transition time that such states can transform from sub-Gaussianity into super-Gaussianity during the evolution. Finally, we compare our measure with the existing measures of non-Gaussianity under the independent dephasing environment.  相似文献   

19.
We discuss relaxation in bosonic and fermionic many-particle systems. For integrable systems, time evolution can cause a dephasing effect, leading for finite subsystems to steady states. We explicitly derive those steady subsystem states and devise sufficient prerequisites for the dephasing to occur. We also find simple scenarios, in which dephasing is ineffective and discuss the dependence on dimensionality and criticality. It follows further that, after a quench of system parameters, entanglement entropy will become extensive. This provides a way of creating strong entanglement in a controlled fashion.  相似文献   

20.
M Büttiker 《Pramana》2002,58(2):241-257
We introduce a hierarchy of density of states to characterize the charge distribution in a mesoscopic conductor. At the bottom of this hierarchy are the partial density of states which represent the contribution to the local density of states if both the incident and the out-going scattering channel is prescribed. The partial density of states play a prominent role in measurements with a scanning tunneling microscope on multiprobe conductors in the presence of current flow. The partial density of states determine the degree of dephasing generated by a weakly coupled voltage probe. In addition the partial density of states determine the frequency-dependent response of mesoscopic conductors in the presence of slowly oscillating voltages applied to the contacts of the sample. The partial density of states permit the formulation of a Friedel sum rule which can be applied locally. We introduce the off-diagonal elements of the partial density of states matrix to describe charge fluctuation processes. This generalization leads to a local Wigner-Smith life-time matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号