首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We report an experimental analysis of the plasma plume produced during ultrafast laser ablation of a copper target, in high vacuum. The plasma plume optical emission is studied by using a hybrid time-gated imaging technique which allows obtaining simultaneous information on the spectral and spatial characteristics of the emitting species. We used both single and double pulse ablation scheme, observing their influence on the characteristics of the ablated atomic species.  相似文献   

2.
In this work, the effect of modulation instability (MI) in optical fiber is used to reshape nanosecond pulses form a directly modulated diode laser. Our configuration includes a fiber where MI causes the side lobes in the signal spectrum and a filter at the fiber output rejecting the side lobes. Simulations show abrupt drop of the transmission of the setup if pulse power is above some critical value. We investigated the transmission for fibers with lengths in the range between 62-m and 4.5-km. The critical power was found to be inversely proportional to the fiber length. An average scaled critical power is 2.16 W km. We demonstrated the application of the method for rejection of the transient peak in a directly modulated diode laser.  相似文献   

3.
The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments.  相似文献   

4.
Ultrashort pulsed laser ablation in vacuum of different targets was performed in order to investigate the possibility of producing nanoparticles with controlled size and shape. A systematic morphology characterization of deposited products was performed for nickel and silicon as a function of laser pulse intensity and wavelength, at a fixed pulse repetition rate. The nanoparticles were investigated by atomic force microscopy, and clear trends for their size and shape anisotropy were evidenced. The best conditions to obtain nanosized particles of oblate ellipsoidal shape, with the minor axis below 10 nm, were determined in the case of nickel targets. Our results show that ultrashort pulse laser deposition can be considered as an interesting technique for the tailoring of nanogranular films with the desired particles dimension and shape, according to the peculiar properties required in specific applications. Moreover, the preliminary features are very promising from the point of view of the production of magnetoresistive films with specific anisotropy.  相似文献   

5.
Neutral magnesium atom emission from nanostructured MgO thin films is induced using two-color nanosecond laser excitation. We find that combined vis/UV excitation, for single-color pulse energies below the desorption threshold, induces neutral Mg-atom emission with hyperthermal kinetic energies in the range of 0.1-0.2 eV. The observed metal atom emission is consistent with a mechanism involving rapid electron transfer to three-coordinated Mg surface sites. The two-color Mg-atom signal is significant only for parallel laser polarizations and temporally overlapped laser pulses indicating that intermediate excited states are short-lived compared to the 5 ns laser pulse duration.  相似文献   

6.
Bai XuYongda Li  Lijun Song 《Optik》2012,123(23):2183-2186
One-dimensional particle-in-cell (PIC) program is used to simulate the generation of high power terahertz (THz) emission from the interaction of an ultrashort intense laser pulse with underdense plasma. The spectra of THz radiation are discussed under different laser intensity, pulse width, incident angle and density scale length. High-amplitude electron plasma wave driven by a laser wakefield can produce powerful THz emission through linear mode conversion under certain conditions. With incident laser intensity of 1018 W/cm2, the generated emission is computed to be of the order of several MV/cm field and tens of MW level power. The corresponding energy conversion efficiency is several ten thousandths, which is higher then the efficiency of other THz source and suitable for the studies of THz nonlinear physics.  相似文献   

7.
A novel optical approach is proposed to generate millimeter wave (MMW) pulse signal based on the pulse reshaping of superstructure fiber Bragg grating (SSFBG). In our scheme, one input pico-second Gaussian pulse is transformed into n Gaussian pulses by the SSFBG reshaping firstly, and then the pulse train is replicated to form a required frequency modulation MMW optical pulse envelope by the linear chirped fiber Bragg grating (LCFBG) or other highly dispersive element. The high-speed photodetector (PD) and band-pass filter can transform the MMW optical pulse into an MMW pulse signal ultimately. Depending on this scheme, MMW signals with frequency up to 10 GHz can be easily generated by the completed fiber components.  相似文献   

8.
Titanium dioxide (TiO2) rutile single crystal was irradiated by infrared femtosecond (fs) laser pulses with repetition rate of 250 kHz and phase transformation of rutile TiO2 was observed. Micro-Raman spectra show that the intensity of Eg Raman vibrating mode of rutile phase increases and that of A1g Raman vibrating mode decreases apparently within the ablation crater after fs laser irradiation. With increasing of irradiation time, the Raman vibrating modes of anatase phase emerged. Rutile phase of TiO2 single crystal is partly transformed into anatase phase. The anatase phase content transformed from rutile phase increased to a constant with increasing of fs pulse laser irradiation time. The study indicates the more stable rutile phase is transformed into anatase phase by the high pressure produced by fs pulse laser irradiation.  相似文献   

9.
Peng Xi 《Optics Communications》2008,281(7):1841-1849
The fundamental advantages to using ultrafast (?100 fs) laser pulses in two-photon microscopy for biomedical imaging are seldom realized due to chromatic dispersion introduced by the required high numerical aperture microscope objective. Dispersion is eliminated here by using the multiphoton intrapulse interference phase scan (MIIPS) method on pulses with a bandwidth greater than 100 nm full width at half maximum. Higher fluorescence intensity, deeper sample penetration, and improved signal-to-noise ratio are demonstrated quantitatively and qualitatively. Due to the higher signal intensity obtained after MIIPS compensation, lower laser power is required, which decreases photobleaching. The observed advantages are not realized if group delay dispersion is compensated for while higher-order dispersion is not. By using a pulse shaper and taking advantage of the broad spectrum of the ultrafast laser, selective excitation of different cell organelles is achieved due to the difference in nonlinear optical susceptibility of different chromophores without requiring an emission filter wheel. Experiments on biological specimens, such as HeLa cells and mouse kidney tissue samples, illustrate the advantages to using sub-10 fs pulses with MIIPS compensation in the field of two-photon microscopy for biomedical imaging.  相似文献   

10.
We propose a technique for timing an X-ray free-electron laser (XFEL) to a high-power conventional laser with femtosecond accuracy, yielding the relative jitter between pump and X-ray probe, and allowing sorting of experimental results over a certain time window. The same electron bunch is used to produce both an XFEL pulse and an ultrashort optical pulse by means of an optical radiator downstream of the X-ray undulator. Being produced by the same electron bunch, these pulses are perfectly synchronized. Cross-correlation techniques will allow to determine relative jitter between the optical pulse (and, thus, the XFEL pulse) and a pulse from an external pump-laser. Technical realization of the proposed timing scheme uses an optical-replica synthesizer setup to be installed after the final bunch-compression stage of the XFEL for electron bunch diagnostics purposes. A number of critical issues are quantitatively analyzed.  相似文献   

11.
Conical nanobump arrays were generated on gold thin film processed by interfering femtosecond laser. The transition of the height and diameter as functions of fluence and pulse width was investigated. When the fluence was 87 mJ/cm2, the height and diameter were not so different at 350 fs or shorter pulse width. They decreased at longer pulse width, and no bump could be generated over 1.6 ps. The results suggest the decrease of size is due to the diffusion of electron to not-excited region, and due to heat conduction to not heated region or substrate, or change of absorbance of laser. At long pulse width of 2.4 ps and relatively higher fluence of 190 mJ/cm2, nanobump had liquid-like structure as a stop motion of a water drop.  相似文献   

12.
A recent paper [L.P. Yatsenko et al., Opt. Commun. 242 (2004) 581] provided a first-principles prediction for the optical ranging signals obtained when using a frequency-shifted feedback (FSF) laser system, seeded by a phase-modulated laser. Such a system has many useful advantages over other alternative FSF laser techniques. We report here experimental verification of that theory, specifically the variation of the amplitude modulation signal with both distance and modulation index of the seed laser. We describe the operation of an all-fiber FSF laser that uses an Er3+-doped active fiber as the gain medium. To improve the signal and minimize the noise we seed the FSF laser with a phase-modulated (PM) laser; the measurement of distance derives from a measurement of amplitude modulation within a narrow frequency interval. We demonstrate that the resulting system is capable of fast and precise measurements. With the bandwidth limitations of our current system we achieved an accuracy better than 0.1 mm. Although measurements based on interferometry offer the potential for much greater accuracy under carefully controlled conditions, the present method does not suffer from the presence of a material-dependent phase shift at the surface of the measured object.  相似文献   

13.
We report on the UV laser-induced fluorescence of hexagonal boron nitride (h-BN) following nanosecond laser irradiation under vacuum and in different environments of nitrogen gas and ambient air. The observed fluorescence bands are tentatively ascribed to impurity and mono (VN) or multiple (m-VN with m=2 or 3) nitrogen vacancies. A structured fluorescence band between 300 and 350 nm is assigned to impurity-band transition and its complex lineshape is attributed to phonon replicas. An additional band at 340 nm, assigned to VN vacancies on surface, is observed under vacuum and quenched by adsorbed molecular oxygen. UV-irradiation of h-BN under vacuum results in a broad asymmetric fluorescence at ∼400 nm assigned to m-VN vacancies; further irradiation breaks more B-N bonds enriching the surface with elemental boron. However, no boron deposit appears under irradiation of samples in ambient atmosphere. This effect is explained by oxygen healing of radiation-induced surface defects. Formation of the oxide layer prevents B-N dissociation and preserves the bulk sample stoichiometry.  相似文献   

14.
We first predict the splitting of a spin degenerate impurity level when this impurity is irradiated by a circularly polarized laser beam tuned in the transparency region of a semiconductor. This splitting, which comes from different exchange processes between the impurity electron and the virtual pairs coupled to the pump beam, induces a spin precession around the laser beam axis, which lasts as long as the pump pulse. It can thus be used for ultrafast spin manipulation. This effect, which has similarities with the exciton optical Stark effect we studied long ago, is here derived using the concepts we developed very recently to treat many-body interactions between composite excitons and which make the physics of this type of effects quite transparent. They, in particular, allow to easily extend this work to other experimental situations in which a spin rotates under laser irradiation.  相似文献   

15.
Laser shock processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results for metal surface treatments in underwater laser irradiation at 1064 nm. A convergent lens is used to deliver 1.2 J/cm2 in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG, two laser spot diameters were used: 0.8 and 1.5 mm.Results using pulse densities of 2500 pulses/cm2 in 6061-T6 aluminum samples and 5000 pulses/cm2 in 2024 aluminum samples are presented. High level of compressive residual stresses are produced −1600 MPa for 6061-T6 Al alloy, and −1400 MPa for 2024 Al alloy. It has been shown that surface residual stress level is higher than that achieved by conventional shot peening and with greater depths. This method can be applied to surface treatment of final metal products.  相似文献   

16.
Laser ablation involves heat transfer, phase changes and/or chemical reactions, and gas dynamics. All three of these processes are tightly coupled with each other. A model has previously been developed to simulate the nanosecond scale laser ablation of carbon. This model has been extended to accommodate longer term simulations and multiple laser pulses. The effects of varying the timing of a second laser pulse by tens of nanoseconds are explored. It is shown that by changing this interval one can control the total mass ablated and the mass transfer rate.  相似文献   

17.
Nanosecond (∼100 ns) pulsed (10 Hz) Nd:YAG laser operating at the wavelength (λ) of 1064 nm with pulse energies of 0.16-1.24 mJ/cm2 has irradiated 10Sm2O3·40BaO·50B2O3 glass. It is demonstrated for the first time that the structural modification resulting the large decease (∼3.5%) in the refractive index is induced by the irradiation of YAG laser with λ=1064 nm. The lines with refractive index changes are written in the deep inside of 100-1000 μm depths by scanning laser. The line width is 1-13 μm, depending on laser pulse energy and focused beam position. It is proposed that the samarium atom heat processing is a novel technique for inducing structural modification (refractive index change) in the deep interior of glass.  相似文献   

18.
We demonstrate theoretically and experimentally that efficient signal shaping operation can be obtained at moderate power by using the transmission characteristic of a power-symmetric nonlinear optical loop mirror (NOLM) including highly twisted fibre and operating through nonlinear polarisation rotation, when the circular polarisation state orthogonal to the input polarisation is selected at the NOLM output. By adjusting the angle of the quarter-wave retarder inserted in the loop, the phase bias of the transfer characteristic can be adjusted precisely to enable proper signal shaping for moderate values of input power, remaining well below switching power. The tolerance of the procedure to deviations of the input polarisation from the ideal circular case is investigated numerically. We demonstrate experimentally the capabilities of this setup for both power equalisation and extinction ratio enhancement. Finally, we show that this setup is also useful to shape ultrashort optical pulses from the relaxation oscillations of a DFB semiconductor laser. In comparison with other NOLM-based techniques, the proposed approach allows to reduce by a factor of 8-10 the peak power required for pulse shaping, for the same fibre length and Kerr coefficient.  相似文献   

19.
A low-repetition-rate (10-Hz), picosecond (ps) optical parametric generator (OPG) seeded at the idler wavelength with a high-power diode laser is demonstrated. The output of the OPG at ∼566 nm is amplified in dye cells, resulting in signal enhancement by more than three orders of magnitude. The nearly transform-limited beam at ∼566 nm has a pulsewidth of ∼170 ps, with an overall output of ∼2.3 mJ/pulse. The laser is tuned either by tuning the nonlinear crystal or the seed-laser current. The applications of such a simple, compact, high-performance, tunable ps laser system for linear and nonlinear spectroscopies are outlined.  相似文献   

20.
Here we report on experimental studies of femtosecond laser induced surface metal alloying. We demonstrate that layers of different metals can be mixed in a certain range of laser pulse energies. Numeric simulations demonstrate that the sub-surface melting and mixing is advantaged through the difference in the electron-phonon coupling constants of the metals in the multi-layer system. Dependence of the depth of the mixed layer on the number of laser pulses per unit area is studied. Numeric simulations illustrate physical picture of the laser alloying process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号