首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Various coumarin dyes are co-doped with perylene red (P-red) and pyrromethene 567 (PM567) into vinyltriethoxysilane-derived solid media, respectively. Energy transfer among laser dyes has been observed, and the effect of coumarin dye concentration on the laser properties has been investigated. With the presence of coumarin dye and pyrromethene 567, enhanced laser performances based on energy transfer of perylene red have been exhibited. The laser efficiency can be improved by two-fold and broad tunable range as wide as 80 nm can be achieved. At the pump intensity of 1.0 J/cm2, the laser output of co-doping perylene red decreases less than 30% after 30,000 pulses.  相似文献   

2.
Laser ablation is widely used to assist in the fabrication of prototype lithium manganate (LiMn2O4) thin film structures for Li-ion battery electrodes via the pulsed laser deposition technique. However, films can be considerably Li and/or O deficient, depending the deposition conditions used. Here we present data on the ionic component of laser-produced plasma in laser ablation of lithium manganate with ns excimer laser. Plasma was monitored using an electrical Langmuir ion probe, in time-of-flight mode in conjunction with mass spectrometry to identify the dominant ionic species. Ablation in vacuum at ∼2.5 J cm−2 revealed the plasma's ionic component was composed primarily of singly charged Li and Mn ions. The time-of-flight data indicates significant deceleration of the plasma when ablation is carried out in an oxygen background gas pressure of the order of 10 Pa. The implications for thin film growth are considered in terms of the possible gas phase interactions and/or thin film re-sputtering yield.  相似文献   

3.
In this paper, damage mechanism and morphology characteristics of chromium film in femtosecond laser rear-side ablation are investigated. The film removing process includes two key sub-processes: the laser ablation dynamic process and subsequent breaking and ejecting dynamic process. Film morphology in rear-side ablation is determined by the interrelation between the laser energy and the film strength. When lower laser energy is used, residual out-layer film is relative thick and tends to break into some large fragments, which results in an irregular ablation shape. While when higher pulse energy is used, thinner residual film with weaker break strength breaks into small fragments, the ablation quality improves correspondingly. Besides laser energy and film property, energy distribution of laser beam also affects the ablation quality. In experiments, this kind of effect is researched by changing the focal position. It is found that ripples, which are familiar nano-structures in front-side ablation, also exist in rear-side ablation. These ripples are formed initially at the interface between quartz substrate and film, and their coverage varies with the energy distribution. Additionally, increasing number of scans is an effective method to shorten the period of ripples.  相似文献   

4.
A free-running Er:YAG laser is used to ablate polyethylene glycol and the ablation yield is studied as a function of molecular weight (1000-10,000 g/mol) and laser fluence (8-25 J/cm2). A steady-state ablation mechanism is proposed which includes recoil-induced expulsion as the primary contributor to the ablation yield. It is also proposed that the formation of a molten layer is a necessary part of the ablation mechanism because the calculated tensile strengths for the solid polymer are too large to permit fracture of the target due to the laser-induced stress transient. The ablation yield is found to depend in a sigmoidal fashion upon laser fluence, thus implying a variable ablation enthalpy. Finally, the current results are compared with that obtained previously with a free electron laser.  相似文献   

5.
We have observed several kinds of hydrocarbon cations after the nanosecond and the femtosecond laser ablation (nsLA and fsLA) of solid C60. The observation indicates that the carbon fragments produced just after laser ablation of the C60 molecule react with the hydrogen atoms and ions coexisting in the ablation plume. In the case of fsLA, clear dependence of the product hydrocarbon species on the ablation laser power has been observed although the dependence is not clearly observed in nsLA. The production of CnH5+ (n = 8, 10, and 12) is only observed in fsLA suggesting the unique nature of the transient carbon fragments produced by fsLA.  相似文献   

6.
We demonstrate that a Raman sensor integrated with a micro-heater, a microfluidic chamber, and a surface-enhanced Raman scattering (SERS) substrate can be fabricated in a glass chip by femtosecond laser micromachining. The micro-heater and the SERS substrate are fabricated by selective metallization on the glass surface using a femtosecond laser oscillator, whereas the microfluidic chamber embedded in the glass sample is fabricated by femtosecond laser ablation using a femtosecond laser amplifier. We believed that this new strategy for fabricating multifunctional integrated microchips has great potential application for lab-on-a-chips.  相似文献   

7.
This paper presents both theoretical and experimental study of the characteristics of Nd: YAG laser pumped energy transfer distributed feedback dye laser (ETDFDL). Using theoretical model proposed, the behavior of ETDFDL such as the characteristics of donor DFDL, the acceptor DFDL, the dependence of their pulse width and output power on donor-acceptor concentrations and pump power are studied for dye mixture Rhodamine 6G and Cresyl Violet in detail. Experimentally using prism-dye cell configuration, the ETDFDL output is obtained and the output energy of DFDL is measured at the emission peaks of donor and acceptor dyes for different pump powers and donor-acceptor concentrations. In addition, the DFDL linewidth measurement has been carried out at the lasing wavelengths of the donor and acceptor dyes using Fabry-Perot etalon and the tunability of DFDL is measured to be in the wavelength range of 545-.  相似文献   

8.
The pulsed laser processing in liquid media is an attractive alternative to produce room temperature luminescent silicon nanocrystals (Si-ncs). We report on a blue luminescent Si-ncs preparation by using nanosecond pulsed laser (Nd:YAG, KrF excimer) processing in transparent polymer and water. The Si-ncs fabrication is assured by ablation of crystalline silicon target immersed in liquids. During the processing and following aging in liquids, oxide based liquid media, induce shell formation around fresh nanocrystals that provides a natural and stable form of surface passivation. The stable room temperature blue-photoluminescent Si-ncs are prepared with maxima located around ∼440 nm with corresponding optical band gap around ∼2.8 eV (∼430 nm). Due to the reduction of surface defects, the Si-ncs preparation in water, leads to a narrowing of full-width-half-maxima of the photoluminescence spectra.  相似文献   

9.
We present a novel technique to fabricate deeply embedded microelectrodes in LiNbO3 using femtosecond pulsed laser ablation and selective electroless plating. The fabrication process mainly consists of four steps, which are (1) micromachining of microgrooves on the surface of LiNbO3 by femtosecond laser ablation; (2) formation of AgNO3 films on substrates; (3) scanning the femtosecond laser beam in the fabricated microgrooves for modification of the inner surfaces; and (4) electroless copper plating. The void-free electroless copper plating is obtained with appropriate cross section of microgrooves and uniform initiation of the autocatalytic deposition on the inner surface of grooves. The dimension and shape of the microelectrodes could be accurately controlled by changing the conditions of femtosecond laser ablation, which in turn can control the distribution of electric field inside LiNbO3 crystal for various applications, opening up a new approach to fabricate three-dimensional integrated electro-optic devices.  相似文献   

10.
A simple dispersion measurement technique has been proposed and demonstrated by using the self-seeding laser oscillation of a Fabry-Perot laser diode through an optical closed-loop path. When the multi-mode optical pulses emitted from the laser are re-injected into the laser after traversing a fiber-under-test, a single mode laser oscillation occurs through the closed-loop path due to the group velocity difference between the pulses of different wavelengths. We measured the dispersion parameter of the fiber-under-test from the modulation frequency changes required to induce single-mode laser oscillations through the optical closed-loop path. The maximum measurement error was less than 1.5% for the optical fibers as compared with a commercial instrument.  相似文献   

11.
The ablation properties of aged triterpenoid dammar and mastic films were investigated using a Krypton Fluoride excimer laser (248 nm, 25 ns). Ablation rate variations between surface and bulk layers indicated changes of the ablation mechanisms across the depth profiles of the films. In particular, after removal of the uppermost surface varnish layers there was a reduction of the ablation step in the bulk that was in line with a significant reduction of carbon dimer emission beneath the surface layers as detected by laser-induced breakdown spectroscopy. The results are explicable by the generation of condensation, cross-linking and oxidative gradients across the depth profile of triterpenoid varnish films during the aging degradation process, which were recently quantified and established on the molecular level.  相似文献   

12.
We have built an accurate wavelength meter based on a Michelson interferometer characterized by a high stability velocity moving system. The unknown wavelength is determined from the Doppler frequency shifts of the output beams of the Michelson interferometer. The reference laser is a frequency stabilized helium-neon laser. A counting resolution of 2.6 × 10−9 for an integration time of 30 s has been obtained. The apparatus has been used to determine the wavelength of a second frequency stabilized helium-neon laser and the result has been compared to those given by two different methods: frequency beating in regards to the national reference and using a commercially available scanning-Michelson wavemeter. Taking into account the statistical errors, we achieved a relative accuracy on the unknown wavelength of 6.4 × 10−8 at 1σ.  相似文献   

13.
Nanoclusters of various materials have recently been obtained by laser ablation. Strong evaporation of a condensed phase caused by laser irradiation is well known to generate an overcooled vapour. Further expansion thereof increases the oversaturation degree and facilitates homogeneous nucleation and cluster growth. To investigate homogeneous nucleation at very high expansion rates attained at nanosecond laser ablation, kinetic equations are applied describing all the possible gas-phase chemical reactions of dissociation and coalescing between small clusters. Additional cooling due to thermal emission by clusters is taken into account. Twenty smallest carbon molecules are considered. The model is applied to nanosecond laser ablation of graphite in vacuum. The resulted vapour molecular composition is characterised by dominating molecules C3 and C5 and an exponential drop of heavier clusters concentrations with their mass. The growth of heavier clusters is controlled by the balance between liberating the latent heat of their formation and the energy losses by expansion and thermal emission.  相似文献   

14.
Silica glass can be machined by irradiation with laser plasma soft X-rays on nano- and micrometer scale. We have investigated the ablation process of silica glass induced by laser plasma soft X-ray irradiation. We observed ionic and neutral species emitted from silica surfaces after irradiation. Dominant ions and neutrals are O+ and Si+ ions and Si, O, SiO and Si2 neutrals, respectively. The ions have kinetic energies of 13 and 25 eV, which are much higher than those of particles emitted by evaporation. The energy of laser plasma soft X-rays absorbed to silica glass at a fluence of 1.4 J/cm2 is estimated to be 380 kJ/cm3, which is higher than the binding energy of SiO2 of 76 kJ/cm3. These results suggest that the most of the bonds in silica glass are broken by absorption of laser plasma soft X-rays, that several percent of the atoms are ionized, and that neutral atoms are emitted together with repulsive ions. The process possibly enables us to fabricate nano structures.  相似文献   

15.
We report an experimental analysis of the plasma plume produced during ultrafast laser ablation of a copper target, in high vacuum. The plasma plume optical emission is studied by using a hybrid time-gated imaging technique which allows obtaining simultaneous information on the spectral and spatial characteristics of the emitting species. We used both single and double pulse ablation scheme, observing their influence on the characteristics of the ablated atomic species.  相似文献   

16.
The present article focuses on a comparison between cleaning process of graffitis on urban buildings by using laser radiation at 308 nm (XeCl excimer laser) and 1064 nm (Nd:YAG laser). Laser-induced breakdown spectroscopy (LIBS) elemental analysis was applied as real-time diagnostic technique, safeguarding against possible damage of the substrate during ablation rate studies. The morphological analysis of the etched surfaces by optical microscopy and environmental scanning electron microscopy reveals remarkable features of interest to understand the wavelength dependence of the ablation efficiency. The ablation threshold fluences of different paints sprayed on several substrates were determined applying a photoacoustic technique. To remove graffitis from urban buildings the laser radiation at 1064 nm was observed to be the most efficient wavelength, supporting the best result.  相似文献   

17.
Pulsed laser ablation (PLA) of ceramic target in liquid phase was successfully employed to prepare calcium tungstate (CaWO4) and calcium molybdate (CaMoO4) colloidal nanoparticles. The crystalline phase, particle morphology and optical property of the colloidal nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy. The produced stable colloidal suspensions consisted of the well-dispersed nanoparticles showing a spherical shape. The mechanism for the laser ablation and nanoparticle forming was discussed under consideration of photo-ablation process. Nanoparticle tracking analysis using optical microscope combined with image analysis was proposed to determine the size distribution function of the prepared colloidal nanoparticles. The mean size of the CaWO4 and CaMoO4 colloidal nanoparticles were 16 and 29 nm, with a standard deviations of 2.1 and 5.2 nm, respectively.  相似文献   

18.
Direct observations of ablation plasma dynamics in electric field is presented. A time-resolved spatial profile of the ablation plasma induced by femtosecond laser ablation (fsLA) with high fluence is visualized using a planar-laser-induced fluorescence (P-LIF) method. The external electric field is produced by installing a mesh electrode at 6 mm from a Samarium solid target. The Sm ion plasma created by the fsLA showed collective motion regardless of the external electric field, until they reached close to the electrode. When the accelerating and decelerating field was applied, the ions almost disappeared behind the electrode from the field of view. The observations are understood utilizing a SIMION simulation with a conceivable potential gradient caused by Debye shield effect, which is that the ablation plasma keeps the same potential as the target voltage and follows electric potential gradient near the mesh electrode. It is also revealed that this effect degrades time-of-flight resolution at high fluence irradiation. This work gives a new direction for further developments of a fsLA time-of-flight spectrometer.  相似文献   

19.
A dual-pulse fs/ns laser induced breakdown spectroscopy configuration, where an initial 250 fs ablating pulsed laser followed by a delayed ns laser beam placed at a fixed distance, orthogonally with the expanding plasma plume, has been used in air on a Al65Cu23Fe12 quasicrystal. The obtained emission data were acquired with a set-up arrangement providing space detections, with a resolution up to 15 μm, of the ns laser pulse generated signals. Assuming the fulfillment of local thermodynamic equilibrium conditions, the role played by the time lag between the two laser beams on the induced plasma excitation temperatures and electronic densities, as well as a space resolved process survey, has been followed. The spatial and time resolved spectra show, almost, steady values of the determined elementary plasma features with the development of nanoparticles occurring during the fs laser pulsed ablation process. The ns laser probe of the dual-pulse LIBS configuration here presented confirms that the nanoparticles induced can be largely widespread in both space and time whose compositions, overall, could retain the starting target stoichiometry. It is shown that these nanoparticles formation can actually take place at different times following the initial ultra-short laser beam incidence and that, especially at long inter-pulse delays (>100 μs), modest compositional changes can be observed.  相似文献   

20.
The review of results on nanoparticles formation is presented under laser ablation of Ag, Au, and Cu-containing solid targets in liquid environments (H2O, C2H5OH, C2H4Cl2, etc.). X-ray diffractometry (XRD), UV-vis optical transmission spectrometry, and high resolution transmission electron microscopy (HRTEM) characterize the nanoparticles. The morphology of nanoparticles is studied as the function of both laser fluence and nature of the liquid. The possibility to control the shape of nanoparticles by ablation of an Au target by an interference pattern of two laser beams is demonstrated. Formation of alloyed Au-Ag and Ag-Cu nanoparticles is reported under laser exposure of a mixture of individual nanoparticles. The effect of internal segregation of brass nanoparticles is discussed due to their small lateral dimensions. The factors are discussed that determine the distribution function of particles size under laser ablation. The influence of laser parameters as well as the nature on the liquid on the properties of nanoparticles is elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号