首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this paper is to study the influence of high pressure treatment on the structural changes and allergenicity of largemouth bass. We treated the allergens at 100, 200, 300 and 400 MPa for 15 min and at 300 MPa for 5, 10, 15, 20 and 30 min at 20 °C. The treated samples from largemouth bass were tested for their IgE-binding properties by combining Sodium dodecyl sulfate-Polyacrylamide gel electrophoresis (SDS-PAGE) with western blotting (WB) and enzyme-linked immunosorbent assay (ELISA). Circular dichroism analysis was performed to characterize the structural change. In summary, we can determine that the greatest structure changes were found for samples treated by 400 MPa for 15 min. High pressure treatment did change the structure, subunit composition and molecular weight of largemouth bass allergens, but it did not change the allergenicity of the allergens.  相似文献   

2.
Pressure-induced structural changes on nano-crystalline La0.8Sr0.2Mn0.8Fe0.2O3 were studied using high-pressure Mössbauer spectroscopy and high-pressure X-ray diffraction. Mössbauer measurements up to 10 GPa showed first order transition at 0.52 GPa indicating transformation of Fe4?+? to high spin Fe3?+?, followed by another subtle transition at 3.7 GPa due to the convergence of two different configurations of Fe into one. High-pressure X-ray diffraction measurements carried up to 4.3 GPa showed similar results at 0.6 GPa as well as 3.6 GPa. Attempts were made to explain the changes at 0.6 GPa by reorientation of grain/grain boundaries due to uniaxial stress generated on the application of pressure. Similarly variation at 3.6 GPa can be explained by orthorhombic to monoclinic transition.  相似文献   

3.
A high-pressure Raman study was carried out on NaAlH4 up to 17 GPa using the diamond anvil cell method. In the pressure region 2–5 GPa, several of the original modes split. Although this might be a sign of some structural change, the spectral changes do not allow us to claim the existence of a clear phase transition in this pressure range. The spectra revert to their ambient pressure forms on decreasing pressure below<3.0–1.4 GPa. A phase transition to β-NaAlH4 was found at 14–16 GPa. This phase transition is also reversible with an unusually strong hysteresis: the β-NaAlH4 can be followed upon decompression down to 3.9 GPa. Analysis of Raman data shows that this phase transition is compatible with a theoretical prediction of a strong volume collapse.  相似文献   

4.
Annealed (H1) and cold-rolled (H2) HAVAR has been studied using high-pressure synchrotron X-ray diffraction. A structural phase transformation was discovered at ~13 GPa at ambient temperature, transforming from m ??3 m (S.G. 225) to P 63/m m c (S.G. 194) symmetry. The transition was not reversible on pressure release. The low-pressure cubic phase was found to be more compressible than the high-pressure hexagonal phase. Conventional Mössbauer and NFS shows that the HAVAR is not magnetic at room temperature and no splitting is observed. The SQUID indicates a huge difference in the temperature dependence of the magnetic susceptibility between the cold Rolled HAVAR compared to the annealed HAVAR.  相似文献   

5.
We report the facile, one-step acetonitrile-mediated synthesis and self-assembly of β-AgVO3 nanowires into three-dimensional (3D) porous spongy-like hydrogel (~ 4 cm diameter) as cathode material for lithium ion battery of high performance and long-term stability. 3D structures made with superlong, very thin, and monoclinic β-AgVO3 nanowires exhibit high specific discharge capacities of 165 mAh g?1 in the first cycle and 100 mAh g?1 at the 50th cycle, with a cyclic capacity retention of 53% at a current density of 50 mA g?1. 3D structures are synthesized by reaction between ammonium vanadate and silver nitrate solution containing 5 mL of acetonitrile followed by a hydrothermal treatment at 200 °C for 12 h. Acetonitrile (used here for the first time in the silver vanadate synthesis) plays an important role in the self-assembly of the silver vanadate nanowires. A tentative growth mechanism for the 3D structure and lithium ions intercalation into β-AgVO3 nanowires has been discussed and described.  相似文献   

6.
The free volume of the microvoids in the polyimide samples, irradiated with 6 MeV electrons, was measured by the positron annihilation technique. The free volume initially decreased the virgin value from ~13.70 to ~10.98 Å3 and then increased to ~18.11 Å3 with increasing the electron fluence, over the range of 5?×?1014 – 5?×?1015 e/cm2. The evolution of gaseous species from the polyimide during electron irradiation was confirmed by the residual gas analysis technique. The polyimide samples irradiated with 6 MeV electrons in AgNO3 solution were studied with the Rutherford back scattering technique. The diffusion of silver in these polyimide samples was observed for fluences >2?×?1015 e/cm2, at which microvoids of size ≥3 Å are produced. Silver atoms did not diffuse in the polyimide samples, which were first irradiated with electrons and then immersed in AgNO3 solution. These results indicate that during electron irradiation, the microvoids with size ≥3 Å were retained in the surface region through which silver atoms of size ~2.88 Å could diffuse into the polyimide. The average depth of diffusion of silver atoms in the polyimide was ~2.5 μm.  相似文献   

7.
We describe a new device, based on a V7 Paris–Edinburgh press, for torsional testing of material at pressures up to 7 GPa (extendable to 15 GPa). Samples are deformed using a simple shear geometry between opposed anvils by rotating the lower anvil, via a rotational actuator, with respect to an upper, stationary, anvil. Use of conical anvil profiles greatly increases sample dimensions more than other high-pressure torsional apparatus did. Samples of polycrystalline Zr (2 mm thick, 3.5 mm diameter) have been sheared at strains exceeding γ ~1.5 at constant strain rate and at pressures from 1.8 to 5 GPa, and textural development has been studied by electron microscopy. Use of amorphous-boron-epoxy gaskets means that nearly simple shear of samples can be routinely achieved. This apparatus allows study of the plastic and anelastic behaviour of materials under high pressure, and is particularly suited for performing in situ investigations using synchrotron or neutron radiation.  相似文献   

8.
The aim of this study was to define the effects of high-pressure treatment (600 MPa, 10 min, 20 °C) on the quality of cooked pork ham prepared with two different levels of curing ingredients in brine. Physical, chemical, microbiological, and sensory tests were performed 24 h after high pressure processing (HPP), as well as after 6 and 8 weeks of storage in refrigerator conditions. The results indicate that HPP causes significant improvement of shelf life of vacuum packed ham, including the samples with reduced level of curing ingredients in brine to 8 weeks in refrigerator conditions (4–6 °C). HPP did not have significant effect on the texture or color of ham. However, it significantly increased the drip loss during storage in the packed samples. This may indicate that HPP has negative effects on water holding capacity of cooked products.  相似文献   

9.
We have investigated the P–T phase diagram of ammonia dihydrate (ADH), ND3·2D2O, using powder neutron diffraction methods over the range 0–9 GPa, 170–300 K. In addition to the ambient pressure phase, ADH I, we have identified three high-pressure phases, ADH II, III, and IV, each of which has been reproduced in at least three separate experiments. Another, apparently body-centred-cubic, phase of ADH has been observed on a single occasion above 6 GPa at 170 K. The existence of a dehydration boundary has been confirmed where, upon compression or warming, ADH IV decomposes to a high-pressure ice phase (ice VII or VIII) and a high-pressure phase of ammonia monohydrate (AMH V or VI).  相似文献   

10.
The pressure-volume relation of rubidium metal is studied by high-pressure x-ray diffraction up to 110 kbar at room temperature. In addition, pressure scans of the near-infrared reflectivity are recorded up to 250 kbar. Rubidium undergoes a bcc to fcc structural transition (Rb I → Rb II) at 70 ± 2 kbar. Other phase transitions occur at 128 ± 3, 160 ± 5 and 190 ± 5 kbar on the ruby pressure scale. The pressure-volume relation and the near-infrared reflectivity provide evidence for a pressure-induced 5s → 4d electronic transition similar to the well-known 6s → 5d transition in cesium metal.  相似文献   

11.
Absorption and luminescence properties of silver nanoclusters embedded in SiO2 matrixes were studied experimentally. Thin SiO2 films with different amount of silver were produced by co-deposition of Ag and SiO2 onto the silica substrates in vacuum. The thus obtained films possess three peaks in absorption spectra at 297, 329 and 401 nm and two peaks in luminescence spectra at about 500 and 650 nm. We ascribed these spectral features to silver nanoclusters of different sizes that present in the film. Thermal annealing transforms both absorption and emission spectra of the films. Lager clusters that are formed after annealing possess one absorption band at 350–450 nm and one luminescence band at 510 nm. The luminescence was observed only in samples with the silver content of less than 2.2%. Quenching of the luminescence in samples with higher concentration of silver is due to the presence of larger particles with plasmonic properties.  相似文献   

12.
We have developed the high-pressure electron spin resonance (ESR) system using a micro-coil in the frequency region up to around 2 GHz and potentially 10 GHz. The hybrid-type piston-cylinder pressure cell whose maximum pressure reaches 4 GPa was used. In this study, we obtained ESR spectra at 2.3 GPa successfully, which can never be obtained by the single-layer piston-cylinder pressure cell. The minimum detectable spin number was estimated to be the order of 1012 spins/G. Moreover, it is shown that the sensitivity can be improved by two orders of magnitude using the field modulation technique. This high-pressure ESR technique is a promising one to achieve the sensitivity and the high pressure simultaneously.  相似文献   

13.
Recently, the paraelectric response of water was investigated in the range 0–100 °C. It showed an almost perfect Curie–Weiss behaviour up to 60 °C, but a slight change in slope of 1/εd versus T at 60 °C was overlooked. In this work, we report optical extinction measurements on metallic (gold and silver) nanoparticles dispersed in water, annealed at various temperatures in the range from 20 to 90 °C. An anomalous response at 60 °C is clearly detectable, which we associate to a subtle structural transformation in the water molecules at that temperature. This water anomaly is also manifested by means of a blue shift in the longitudinal surface plasmon resonance of the metallic nanoparticles for the solutions annealed at temperatures higher than about 60 °C. A reanalysis of 1/εd (T) for water in the whole temperature range leads us to conclude that the water molecule undergoes a subtle transformation from a low temperature (0–60 °C) configuration with a dipole moment μ1 = 2.18 D (close to the molecular dipole moment of ice) to a high temperature (60–100 °C) configuration with μ2 = 1.87 D (identical to the molecular dipole moment in water vapour).  相似文献   

14.
Lin Li  Xin Xue  Su Liu  Hui Zhou 《Ionics》2017,23(6):1451-1459
Compact lithium phosphorous oxynitride (LiPON) thin films, as a solid-state electrolyte for all solid-state Li batteries and electrochromic (EC) devices, with the high ratio of the triply coordinated –N< (Nt) over the doubly coordinated –N= (Nd) structural units was deposited by a conventional reactive RF magnetron sputtering of a Li3PO4 target at a low pure N2 pressure. The effect of heat treatment from 200 to 500 °C on the ionic conductivity and local structure of LiPON thin films were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) core level analysis. A dramatical improvement of ionic conductivity from 1.1 to 3.28 μS/cm and microstructure changes were happened on the LiPON thin films while annealed for 1 h at 300 °C, which was linked to structural differences with a highest ratio of –N< over –N= structural units. The work proves that a proper heat treatment on LiPON thin film can effectively improve its ionic conductivity and change its microstructure.  相似文献   

15.
Colorimetric silver nanoparticle sensor was developed for determination of aminoglycosides in milk. Silver nanoparticles were synthesized by using sodium borohydride as reducing agent and sodium dodecyl sulfate as stabilizer. Yellow color of silver turned into orange and red in proportion to the concentrations of analytes. Quantitative analyses were performed by using decrease in absorbance of silver nanoparticles at 394 nm. Linear ranges were 20–60 ng mL?1, 23–60 ng mL?1, and 60–100 ng mL?1 for gentamicin, tobramycin, and amikacin, respectively. The method was optimized in terms of pH, ionic strength, and time. This simple and validated method was applied to milk samples and pharmaceutical preparations.  相似文献   

16.
Polyethylene glycol (PEG) molecules act as a reducing and stabilizing agent in the formation of silver nanoparticles. PEG undergoes thermal oxidative degradation at temperatures over 70 °C in the presence of oxygen. Here, we studied how the temperature and an oxidizing atmosphere could affect the synthesis of silver nanoparticles with PEG. We tested different AgNO3 concentrations for nanoparticles syntheses using PEG of low molecular weight, at 60 and 100 °C. At the higher temperature, the reducing action of PEG increased and the effect of PEG/Ag+ ratio on nanoparticles aggregation changed. These results suggest that different synthesis mechanisms operate at 60 and 100 °C. Thus, at 60 °C the reduction of silver ions can occur through the oxidation of the hydroxyl groups of PEG, as has been previously reported. We propose that the thermal oxidative degradation of PEG at 100 °C increases the number of both, functional groups and molecules that can reduce silver ions and stabilize silver nanoparticles. This degradation process could explain the enhancement of PEG reducing action observed by other authors when they increase the reaction temperature or use a PEG of higher molecular weight  相似文献   

17.
ABSTRACT

Colloidal silver nanoparticles were prepared by a simple chemical reduction method. The effect of L-cysteine on the surface-enhanced Raman scattering activity of colloidal silver nanoparticles was investigated by using malachite green as a probe molecule. It was found that the surface-enhanced Raman scattering activity of colloidal silver nanoparticles was improved tremendously with the help of L-cysteine. The possible reasons for this enhancement effect were given. Specifically, in silver colloidal solution, no surface-enhanced Raman scattering spectrum of malachite green was observed at a relatively low concentration (≤2.5 × 10?5 mol/L). However, well-resolved and high-quality surface-enhanced Raman scattering spectra of malachite green were successfully obtained after the addition of L-cysteine to silver colloids, and the minimum detection limit for malachite green was down to 10?8 mol/L.  相似文献   

18.
In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of ?41.98 mV for the gold nanoparticles and ?53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV–visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7–99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.  相似文献   

19.
The increasing use of manufactured nanoparticles ensures these materials will make their way into the environment. Silver nanoparticles in particular, due to use in a wide range of applications, have the potential to get into water systems, e.g., drinking water systems, ground water systems, estuaries, and/or lakes. One important question is what is the chemical and physical state of these nanoparticles in water? Are they present as isolated particles, agglomerates or dissolved ions, as this will dictate their fate and transport. Furthermore, does the chemical and physical state of the nanoparticles change as a function of size or differ from micron-sized particles of similar composition? In this study, an electrospray atomizer coupled to a scanning mobility particle sizer (ES-SMPS) is used to investigate the state of silver nanoparticles in water and aqueous nitric acid environments. Over the range of pH values investigated, 0.5–6.5, silver nanoparticles with a bimodal primary particle size distribution with the most intense peak at 5.0 ± 7.4 nm, as determined from transmission electron microscopy (TEM), show distinct size distributions indicating agglomeration between pH 6.5 and 3 and isolated nanoparticles at pH values from 2.5 to 1. At the lowest pH investigated, pH 0.5, there are no peaks detected by the SMPS, indicating complete nanoparticle dissolution. Further analysis of the solution shows dissolved Ag ions at a pH of 0.5. Interestingly, silver nanoparticle dissolution shows size dependent behavior as larger, micron-sized silver particles show no dissolution at this pH. Environmental implications of these results are discussed.  相似文献   

20.
Zhang  Qun  Ge  Kun  Duan  Jianlei  Chen  Shizhu  Zhang  Ran  Zhang  Cuimiao  Wang  Shuxiang  Zhang  Jinchao 《Journal of nanoparticle research》2014,16(11):1-12
The sintering of a silver (Ag) nanoparticle film by laser beam irradiation was studied using a CW DPSS laser. The laser sintering of the Ag nanoparticle thin film gave a transparent conductive film with a thickness of ca. 10 nm, whereas a thin film sintered by conventional heat treatment using an electronic furnace was an insulator because of the formation of isolated silver grains during the slow heating process. The laser sintering of the Ag nanoparticle thin film gave a unique conductive network structure due to the rapid heating and quenching process caused by laser beam scanning. The influences of the laser sintering conditions such as laser scan speed on the conductivity and the transparency were studied. With the increase of scan speed from 0.50 to 5.00 mm/s, the surface resistivity remarkably decreased from 4.45 × 108 to 6.30 Ω/sq. The addition of copper (Cu) nanoparticles to silver thin film was also studied to improve the homogeneity of the film and the conductivity due to the interaction between the oxidized surface of Cu nanoparticle and a glass substrate. By adding 5 wt% Cu nanoparticles to the Ag thin film, the surface resistivity improved to 2.40 Ω/sq.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号