首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 176 毫秒
1.
鄢锦  宿晓静  徐达  吴永清 《声学学报》2020,45(3):334-340
采用一级小斜率近似方法处理空气声经粗糙海面透射至浅海中的声场问题。假定空气、海水和海底为三层均匀介质,将海水层中声场分解为下行波和上行波,导出了粗糙海面条件下下行波和总声场的小斜率近似表达式。导出的声场表达式可由快速傅里叶变换计算,但会出现混叠问题。为了减轻混叠影响,提出了引入额外介质吸收的计算方法。针对高度一维变化且频谱满足PM谱的起伏海面,采用蒙特卡洛仿真计算了相应的水下声场。结果表明,随着海面起伏均方根高度的增加,水下相干场强度减小而均方声压则略有增大。   相似文献   

2.
刘若芸  彭朝晖  张波 《声学学报》2023,(6):1098-1110
基于海洋环境信息、起伏海面的小斜率近似和简正波模型,研究了浅海环境中不同季节起伏海面散射引起的声传播损失的统计特性,给出了海面散射声传播损失-风速拟合公式以及一种快速声场预报方法,可据此快速评估水下长期工作设备的工作性能。仿真结果表明,对于全年运行的水声设备,当传播距离超过10 km时,须考虑起伏海面散射对声传播的影响。起伏海面散射对声场的影响冬季大于夏季,在夏季负跃层环境中起伏海面散射对下发上收声场的影响大于下发下收声场。  相似文献   

3.
低噪声通过特性的测量仿真研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文研究运用组合传感器和声压、振速联合信息处理技术进行低品声通过特性的测量。通过特性的背景噪声出非相干的各向同性白噪声和相干的交通干扰组成,交通干扰又分为平稳与非平稳两种,用平均声强器来抗非相干干扰;用交通干扰能量流中心方位抑制技术来抗平稳的相干干扰;对于非平稳的相干干扰而能量流中心方位抑制技术。仿真试验表明效果良好。  相似文献   

4.
季桂花  何利  张振洲  甘维明 《声学学报》2021,46(6):1132-1143
水下声场的时间积分声强和峰值声强是声呐检测中的重要物理量,而海洋中的内波等动力学过程会造成声场强度的起伏。对南海北部浅海内波环境下定点声起伏实验数据分析,结合数值仿真,总结了试验海域近海底发射和近海底接收条件下内波引起接收信号强度起伏的统计特性.分析结果表明:接收信号的时间积分声强起伏小于峰值声强起伏;时间积分声强与峰值声强起伏的概率分布与对数正态分布较为接近.时间积分声强和峰值声强起伏大小与信号的频率有关,同一收发距离,中心频率650 Hz信号的声强起伏较中心频率310 Hz和375 Hz信号的声强起伏更为剧烈。对于同一频率,当海底较平坦时,声强起伏的闪烁指数随传播距离的增加而增大;当水深随传播距离逐渐变深时,声强起伏规律受内波和水深变化共同影响而更为复杂,闪烁指数先随传播距离增加而增大,之后又随传播距离的增加而逐渐变小.   相似文献   

5.
应用蒙特卡罗方法实现了粗糙海面的仿真与模拟,建立了基于双积分方程的高功率微波(HPM)近海面传输特性矩量法计算模型。模型采用光滑窗函数对均匀平面波进行调制,把均匀平面波入射调制为锥形波,消除了粗糙海面突然被截断而引起的边缘效应的影响;重新推导了锥形波入射下的基尔霍夫近似公式,并在满足基尔霍夫近似的条件下,通过对比分析,验证了模型的正确性;采用模型计算分析了不同海面几何参数和海水媒质参数对HPM近海面传输系数的影响。结果表明:粗糙海面的均方根高度对HPM传输系数影响明显,均方根高度越大,传输系数越小,能量分布越均匀;另外随着海水介电常数实部和虚部的增加,传输系数均有所增加,并且实部的影响更明显。  相似文献   

6.
马普-赫斯棱镜对单模高斯光束光强分布影响分析   总被引:1,自引:0,他引:1  
王涛  吴福全  马丽丽  张树东 《光子学报》2008,37(7):1473-1477
根据光在马普-赫斯棱镜两空气隙胶合层中的干涉效应,分析了其对单模高斯光束光强分布的影响.结果表明,对于某一高斯光束入射棱镜时,透射光束光强将随入射角的变化而呈现周期性的振荡;对于正入射的光束,当空气隙的厚度一定时,透射光强随棱镜两空气隙结构角的变化作周期性振荡;当结构角一定时,透射光强随空气隙厚度的变化作周期性变化;且透射高斯光束的形状也随棱镜结构的改变发生变化,表明,可以通过选择合适的棱镜结构以减小棱镜对透射光束的影响,对于成品棱镜,则可通过改变入射角使棱镜的性能达到较佳状态.  相似文献   

7.
丛林地貌高功率微波传输散射特性   总被引:1,自引:0,他引:1       下载免费PDF全文
 采用时域有限差分方法仿真分析了高功率微波在丛林地貌传输的双站散射特性,得到了不同入射角度下的双站散射规律,对比分析了利用数值和解析两种方法得到的丛林散射系数与掠射角关系。理论分析和数值计算结果表明:散射系数曲线存在布儒斯特角,且地貌电参数越大,布儒斯特角越小;掠射角小于布儒斯特角时,散射系数随掠射角的增大而减小;掠射角大于布儒斯特角时,散射系数随掠射角的增大而增大。水平面情况下的不同丛林类型双站散射系数变化趋势一致;对于介电常数相对较大的丛林地貌类型,通过镜面反射方向时域有限差分方法得到的半功率波瓣宽度较宽;同一丛林地貌类型不同均方根高度条件下,均方根高度增大,相干分量变小,非相干分量变大;不同入射角、相同地貌和电参数情况下,散射系数的峰值向对应的镜面反射方向移动。  相似文献   

8.
由Hueygen原理出发,介绍了粗糙表面的光散射特性.基于微扰近似,在不考虑遮蔽效应和圆锥顶点的散射情况下,分析了圆锥物体的光散射特性,推导了圆锥物体对平面光的散射场解析表达式.计算了圆锥表面在高度起伏均方根不同情况下对1.06μm光波的散射,并且得到了入射角一定的情况下,不同观察方向的散射光强分布曲线.结果表明,在观察方位角不变时,圆锥的散射光强随观察角顶角的增加先增大后减小;在观测方位角一定时,散射光强随高度起伏均方根的增加而减小,且随观察方位角呈对称分布.  相似文献   

9.
刘建斌 《光子学报》2014,38(10):2665-2668
由Hueygen原理出发,介绍了粗糙表面的光散射特性.基于微扰近似,在不考虑遮蔽效应和圆锥顶点的散射情况下,分析了圆锥物体的光散射特性,推导了圆锥物体对平面光的散射场解析表达式.计算了圆锥表面在高度起伏均方根不同情况下对1.06μm光波的散射,并且得到了入射角一定的情况下,不同观察方向的散射光强分布曲线.结果表明,在观察方位角不变时,圆锥的散射光强随观察角顶角的增加先增大后减小|在观测方位角一定时,散射光强随高度起伏均方根的增加而减小,且随观察方位角呈对称分布.  相似文献   

10.
在散射能量基本为前向散射且集中在“镜面反射”方向的情况下,粗糙海面反射损失建模是声呐信号传播建模必不可少的一部分,尤其对于中远距离下浅海或者存在表面声道的水声环境,小掠射角(10°以内)下的粗糙海面反射损失建模尤为重要。首先基于高斯谱粗糙海面模型,通过高海况下的声传播试验数据处理分析了粗糙海面边界条件下的Ramsurf声传播模型的有效性,进而以Ramsurf声传播模型为基准,在小掠射角下,比较分析了Kirchhoff近似(KA)海面反射损失模型和小斜率近似(SSA)海面反射损失模型,数值计算结果表明,在小掠射角下SSA海面反射损失模型与Ramsurf计算结果较为吻合,是比较精确的海面反射损失模型。   相似文献   

11.
The first-order small slope approximation is applied to the problem of the sound transmission from an airborne source into deep ocean through a rough sea surface,and expressions are derived for the transmitted sound field and its coherent component.Numerical calculations are performed.The sea surface is assumed to be random rough with a PiersonMoskowitz spectrum and to have height variations in only one dimension.For the case of the airborne line source,the small slope approximation results are in good agreement with those from integral equations,and show that the mean of sound intensity at observation direction with shallow depression angle increases and approaches a limit as the root-mean-square surface height increases,while the coherent field intensity consistently decreases.For the case of the point source,the small slope approximation results show that the mean of sound intensity depends significantly on the source-receiver bearing angle,but the coherent field intensity is independent of this angle.  相似文献   

12.
The first-order small slope approximation is applied to the problem of the sound transmission from an airborne source into shallow water through a rough sea surface.By assuming a three-layer homogeneous fluid model and decomposing the sound field in water layer into up-going and down-going waves,the expressions for the down-going wave and thus the total field are derived.The expressions can be calculated by the FFT,but the alias problem will arise.To mitigate the alias effect,additional medium absorption is introduced and afterwards compensated.Monte Carlo calculations are performed.The sea surface is assumed to be random rough with a Pierson-Moskowitz spectrum and to have height variations in only one dimension.The results show that the mean field intensity decreases as the root-mean-square surface height increases,while the mean-square field intensity increases slightly.  相似文献   

13.
浅海周期起伏海底环境下的声传播   总被引:1,自引:0,他引:1       下载免费PDF全文
海底粗糙对水下声传播及水声探测等应用具有重要影响.利用黄海夏季典型海洋环境,分析了同时存在海底周期起伏和强温跃层条件下的声传播特性,结果表明:由于海底周期起伏的存在,对于低频(<1 kHz)、近程(10 km)的声信号,传播损失可增大5—30 dB.总结了声传播损失及脉冲到达结构随声源深度、海底起伏周期及起伏高度等因素变化的规律.当海底起伏周期不变时,起伏高度越大引起的异常声传播的影响随之变大;当起伏高度不变时,随着起伏周期变大,其对声传播的影响逐渐变小.用射线理论分析了其影响机理,由于海底周期起伏改变了声波与海底的入射和反射角度,使得原本小掠射角入射到海底的声线变为大掠射角,导致海底的反射损失增大;另一方面,声线反射角度的改变会使得原本可以到达接收点的声能量,由于与海底作用次数增加或变为反向传播而大幅度衰减.在浅海负跃层环境下,声源位于跃层上比位于跃层下对声传播影响更大.周期起伏海底对脉冲声传播的影响表现在引起不同角度的声线(或简正波号数)之间的能量发生转化,一些大角度声线能量衰减加大,多途结构变少.多途结构到达时间及相对幅度的变化进而影响声场的频谱,会使得基于匹配场定位的方法性能受到影响.所以,声呐在实际浅海环境中应用时,应对起伏海底的影响予以重视.此外,研究结果对海底地形测绘空间精度的提高也具有重要参考意义.  相似文献   

14.
This paper studies the intensity of the acoustic field generated by a point source above a rough surface with the Dirichlet or Neumann boundary conditions. The derived equations are valid for arbitrary distances between the source, receiver and rough surface, including the case when these distances are smaller than the correlation radius of the surface roughness. It is believed that the proposed method is an improvement of the more conventional approach, which is based on integration over individual areas of the rough surface and that is valid when the source, receiver, and surface are at large distances from each other. The main limitation in deriving the expressions for the acoustic field intensity is the condition that the mutual shadowing of the surface points is small, which is close to the small slope approximation for the rough surface profile. The derivation includes the limiting cases which lead to the traditional small perturbation method and Kirchhoff approximation.  相似文献   

15.
针对随机起伏冰面的声散射计算问题,利用修正反射系数的Kirchhoff近似方法计算了高斯起伏冰面的三维声散射。在计算模型中引入了冰面局部统计平均反射系数的概念,将二维高斯起伏冰面的散射分为相干散射和非相干散射,分别得到两类散射成分的散射系数公式,计算了高斯起伏冰面三维声散射的散射强度。分析了散射强度与随机起伏冰面的均方根高度、声波入射角度及频率的关系。通过实验室水池中高斯起伏冰面的散射强度测量实验,对理论模型的计算结果进行了验证。将实验结果分别与采用冰面局部统计平均反射系数的模型计算结果和文献中采用平整冰面镜反射系数的模型计算结果进行了对比,采用冰面局部统计平均反射系数的模型计算结果与实验测量值吻合较好。   相似文献   

16.
Acoustic prereverberation caused by sound scattering from the rough sea surface is considered. For the case of low-frequency scattering described by the first approximation of the small perturbation method, the arrival times and angles of prereverberation signals in the subsurface sound channel are calculated as functions of the wind speed, sound frequency, and distance.  相似文献   

17.
受海面强风和海-气相互作用影响,表面声道普遍存在于冬季海洋环境中,是一种天然有利于声传播的波导.但是海面波浪使得海表形成粗糙界面,会严重破坏这种优良性能.本文利用南海北部海区的一次冬季声传播实验数据,研究表面声道声传播特性.研究表明,海底底质对表面声道内声传播的影响较弱,当海面风较小时,涌浪造成的影响为主要原因.实验数据显示,考虑涌浪后的粗糙海面给70km远处带来了10dB的传播损失增长.因此在考察南海北部海区冬季声场特性时,不仅要考虑海面风浪的影响,更需要考虑周围海域传来的涌浪的影响.研究涌浪存在时的声传播特性对提升声纳设备在海况较差时的使用性能具有重要意义.  相似文献   

18.
Tim Lieuwen 《Applied Acoustics》2002,63(9):1031-1050
This paper describes an analysis of reflection and transmission of acoustic waves from an imperfectly reflecting, rough fluid-fluid interface within the Kirchhoff approximation. It presents the results of calculations of the coherent and diffuse field. This work is motivated by the fact that few explicit results of the characteristics of the scattered and transmitted wave field exist in the literature for this problem. For the problem of interest, the surface reflection coefficient depends at each point upon the local angle between the incident wave and the rough surface. For surfaces with statistically independent local surface position and gradient, coherent field calculations show that the correction to constant reflection coefficient analyses is simply a multiplicative factor that depends upon the statistical characteristics of the surface gradient, sound speed and density ratio across the surface. This multiplicative factor is interpreted as an average reflection or transmission coefficient, <R> and <T>, respectively. The principle differences between these results and constant reflection coefficient analyses occur when waves impinge upon regions with higher sound speeds, where total internal reflection may occur. While the wave characteristics of smooth or constant reflection coefficient surfaces change abruptly in the vicinity of the angle of total internal reflection, the average reflection coefficient exhibits a much smoother dependence upon angle of incidence or sound speed ratio for rough surfaces. It is also shown that the direction of maximum diffuse scattering moves relative to its value were the reflection coefficient constant.  相似文献   

19.
The effect of the deviation of the real rough sea surface from the Gaussian isotropic surface on the scattering coefficient of high-frequency sound is analyzed. The analysis relies on the data on the sea surface slopes, obtained from field experiments in the Black Sea with the use of a two-dimensional laser slopemeter. It is shown that the effect of the anisotropy of the surface wave field on the scattering coefficient is small when the angle of incidence is small, but this effect rapidly increases as the angle of incidence grows. The deviation of the real statistical moments of the sea surface slopes from those corresponding to the Gaussian distribution results in a ±20% error in the theoretical values of the scattering coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号