首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The three qubits mutually unbiased bases (MUB) diagonal density matrices with maximally entanglement in Greenberger-Horne-Zeilinger (GHZ) basis are studied. These are a natural generalization of Bell-state diagonal density matrices. The linearity of positive partial transpose (PPT) conditions allows one to specify completely PPT states or feasible region (FR) which form a polygon, where the projection of the feasible region to some two dimensional planes has lead to better visualization. To reveal the PPT entangled regions of these density matrices, we manipulate some appropriate optimal non-decomposable linear entanglement witnesses (EWs) as the envelope of family of linear optimal non-decomposable EWs. These nonlinear EWs are nonlinear functional of MUB diagonal states, so that they are nonnegative valued over all separable, but they are negative valued over some PPT entangled MUB diagonal states. Even though, these nonlinear EWs can not separate completely, the PPT entanglement region from separable one, but however in special cases they lead to necessary and sufficient condition for separability. To support the evidence, we study three categories for special choices of parameters in density matrices, and using the nonlinear EWs we can distinguish the region of PPT entangled states and separable states, completely. At the end some numerical simulations are provided to show the practical applicability of these nonlinear EWs in detecting some PPT entangled MUB diagonal states.  相似文献   

2.
We study in detail the entanglement degree of finite-dimensional pair coherent states (PCSs) in terms of different parameters involved in the coherent states. Since these states are a type of correlated two-mode states in finite dimension, we use the D concurrence and linear entropy to quantify their amount of entanglement. We show that the maximum entanglement can be obtained for two and threedimensional (finite-dimensional) PCSs, and states with higher dimensions cannot attain this limit. We generalize the discussion to a superposition of two states of this class and give the maximum entangled states for even and odd finite-dimensional PCSs. In addition, we consider the entanglement degree of nonlinear finite-dimensional PCSs and survey the maximality condition. Finally, we discuss the entanglement for a class of mixed states defined as a statistical mixture of two pure finite-dimensional PCSs. Our observations may have important implications in exploiting these states in quantum information theory.  相似文献   

3.
For nonlinear interactions with different forms of intensity-dependent coupling, entanglement transfer from the correlated two-mode SU(1,1) coherent states (SCS) to the initially separable and mixed atoms is investigated. It is found that suitable intensity-dependent coupling can enhance the entanglement transfer and make the atomic entanglement evolve periodically especially for the initially mixed atomic states. For SCS, the entanglement between the two modes is strengthened with the increase of the photon number difference (PND) between the two modes of the fields. When PND is odd, the entanglement between the atoms is less than that when PND is even.  相似文献   

4.
K.Berrada 《中国物理 B》2014,23(2):24208-024208
In this paper, we construct photon-added f-deformed coherent states (PAf-DCSs) for nonlinear bosonic fields by discussing Klauder's minimal set of conditions required to obtain coherent states. Using this set of nonlinear states, we propose a very useful scheme for generating the maximal amount of entanglement via unitary beam splitters for different strength regimes of the input field α, deformation q and excitation number m. Therefore, the possibility to create highly entangled states and to control the entanglement is proposed. Moreover, the condition for a maximal and separable output beam state is obtained. Finally, we examine the statistical properties of the PAf-DCSs through the Mandel parameter and exploit a connection between this quantity and the behavior variation of the output state entanglement. Our result may open new perspectives in different tasks of quantum information processing.  相似文献   

5.
提出了一种基于交叉克尔非线性效应的纠缠态转移方案.利用该方案可以将离散变量光场态之间的纠缠关系转移到连续变量光场态(相干态)上.通过适当设置初始相干态的振幅,该方案可以使转移后的纠缠相干态处于最大纠缠态. 关键词: 交叉克尔效应 纠缠转移 纠缠相干态  相似文献   

6.
Quantum entanglement, one of the defining features of quantum mechanics, has been demonstrated in a variety of nonlinear spinlike systems. Quantum entanglement in linear systems has proven significantly more challenging, as the intrinsic energy level degeneracy associated with linearity makes quantum control more difficult. Here we demonstrate the quantum entanglement of photon states in two independent linear microwave resonators, creating N-photon NOON states (entangled states |N0> + |0N>) as a benchmark demonstration. We use a superconducting quantum circuit that includes Josephson qubits to control and measure the two resonators, and we completely characterize the entangled states with bipartite Wigner tomography. These results demonstrate a significant advance in the quantum control of linear resonators in superconducting circuits.  相似文献   

7.
In this review, we introduce some methods for detecting or measuring entanglement. Several nonlinear entanglement witnesses are presented. We derive a series of Bell inequalities whose maximally violations for any multipartite qubit states can be calculated by using our formulas. Both the nonlinear entanglement witnesses and the Bell inequalities can be operated experimentally. Thus they supply an effective way for detecting entanglement. We also introduce some experimental methods to measure the entanglement of formation, and the lower bound of the convex-roof extension of negativity.  相似文献   

8.
We will study entangled two-photon states generated from a two-mode supersymmetric model and quantify degree of entanglement in terms of the entropy of entanglement. The influences of the nonlinearity on the degree of entanglement is also examined, and it is shown that amount of entanglement increase with increasing the nonlinear coupling constant. PACS numbers: 03.67.-a, 03.67.Mn.  相似文献   

9.
In this paper we investigate the entanglement dynamics between two two-level atoms interacting with two coherent fields in two spatially separated cavities which are filled with a Kerr-like medium. We examine the effect of nonlinear medium on the dynamical properties of entanglement and atomic occupation probabilities in the case of even and odd deformed coherent states. The results show that the deformed fields play important roles in the evolution of entanglement. Also, the results demonstrate that entanglement sudden death, sudden birth and long-distance can be controlled by the deformation and nonlinear parameters.  相似文献   

10.
An analytical solution for a master equation describing the dynamics of a qubit interacting with a nonlinear Kerr-like cavity through intensity-dependent coupling is established. A superposition of squeezed coherent states is propped as the initial cavity field. The dynamics of the entangled qubit-cavity states are explored by negativity for different deformed function of the intensity-dependent coupling. We have examined the effects of the Kerr-like nonlinearity and the qubit-cavity detuning as well as the phase cavity damping on the generated entanglement. The intensity-dependent coupling increases the sensitivity of the generated entanglement to the phase-damping. The stability and the strength of the entanglement are controlled by the Kerr-like nonlinearity, the qubit-cavity detuning, and the initial cavity non-classicality. These physical parameters enhance the robustness of the qubit-cavity entanglement against the cavity phase-damping. The high initial cavity non-classicality enhances the robustness of the qubit-cavity entanglement against the phase-damping effect.  相似文献   

11.
12.
Two amplification schemes are considered for entangled squeezed states of light, including an Einstein-Podolsky-Rosen entangled state of continuous variables (EPR pair): propagation in a nonlinear medium and reflection from a cavity. Both schemes make use of a parametric process that can be implemented in a periodic nonlinear medium. The existence of an integral of motion makes it possible to amplify an entangled state of light while preserving the initial entanglement. To analyze the cavity-based scheme, a master equation is derived for the density matrix of the field inside the cavity. The feasibility of amplification that preserves entanglement of an EPR pair is demonstrated for this scheme.  相似文献   

13.
卢道明* 《物理学报》2013,62(3):30302-030302
研究由三个全同的二能级原子与耦合腔构成的系统, 考虑腔场处于弱相干态的情况. 采用Negativity熵度量两子系统间的纠缠, 利用数值计算方法研究了两个原子之间和两个腔场之间的纠缠性质. 讨论了腔场间的耦合系数和腔场的强度对纠缠特性的影响. 研究结果表明: 随光场强度增大, 原子间纠缠和腔场间纠缠均增强. 另一方面, 随耦合腔的耦合系数增大, 两原子间的纠缠减弱, 腔A和腔B间的纠缠增强; 而腔B和腔C间的纠缠, 以及腔A和腔C间纠缠与腔场间的耦合系数间存在非线性关系.  相似文献   

14.
多组份纠缠是量子信息处理的重要资源,它的产生通常涉及到许多复杂的线性和非线性过程.本文从理论上提出了一种利用两个独立的四波混频过程和线性分束器产生真正的四组份纠缠的方案,其中,线性分束器的作用是将两个独立的四波混频过程联系起来.首先应用部分转置正定判据研究了强度增益对四组份纠缠的影响,结果表明,在整个增益区域内都存在真正的四组份纠缠,并且随着强度增益的增加,纠缠也在增强.然后研究了线性分束器的透射率对四组份纠缠的影响,发现只要线性分束器的透射率不为0或1,该系统也可以产生真正的四组份纠缠.最后,通过研究该系统可能存在的三组份纠缠和两组份纠缠来揭示该系统的纠缠结构.本文理论结果为实验上利用原子系综四波混频过程产生真正的四组份纠缠提供了可靠的方案.  相似文献   

15.
We study the nonlinear positive map of the density matrix of two-qubit Werner states, called the nonlinear channel. The map ρ → Φ(ρ) is realized by the rational function Φ. We discuss the influence of the map on the entanglement properties of the transformed density matrix. We investigate the violation of the Bell inequality (CHSH inequality) for the two-qubit state Φ(ρ). The nonlinear channels under discussion create the entangled state from a separable Werner state. We study the quantum spin tomograms of the states.  相似文献   

16.
We present an analytical analysis of the spatial resolution of quantum ghost imaging implemented by entangled photons from a general, spontaneously parametric, down-conversion process. We find that the resolution is affected by both the pump beam waist and the nonlinear crystal length. Hence, we determined a method to improve the resolution for a certain imaging setup. It should be noted that the resolution is not uniquely related to the degree of entanglement of the photon pair since the resolution can be optimized for a certain degree of entanglement. For certain types of Einstein-Podolsky-Rosen(EPR) states——namely the momentum-correlated or momentum-positively correlated states——the resolution exhibits a simpler relationship with the pump beam waist and crystal length. Further, a vivid numerical simulation of ghost imaging is presented for different types of EPR states,which supports our analysis. This work discusses applicable references to the applications of quantum ghost imaging.  相似文献   

17.
Characterization of the multipartite mixed state entanglement is still a challenging problem. This is due to the fact that the entanglement for the mixed states, in general, is defined by a convex-roof extension. That is the entanglement measure of a mixed state ρ of a quantum system can be defined as the minimum average entanglement of an ensemble of pure states. In this paper, we show that polynomial entanglement measures of degree 2 of even-N qubits X states is in the full agreement with the genuine multipartite (GM) concurrence. Then, we plot the hierarchy of entanglement classification for four qubit pure states and then using new invariants, we classify the four qubit pure states. We focus on the convex combination of the classes whose at most the one of the invariants is non-zero and find the relationship between entanglement measures consist of non-zero-invariant, GM concurrence and one-tangle. We show that in many entanglement classes of four qubit states, GM concurrence is equal to the square root of one-tangle.  相似文献   

18.
19.
We investigate the entanglement properties of bound states in an exactly soluble two-electron model, the Moshinsky atom. We present exact entanglement calculations for the ground, first and second excited states of the system. We find that these states become more entangled when the relative inter-particle interaction becomes stronger. As a general trend, we also observe that the entanglement of the eigenstates tends to increase with the states’ energy. There are, however, “entanglement level-crossings” where the entanglement of a state becomes larger than the entanglement of other states with higher energy. In the limit of weak interaction, we also compute (exactly) the entanglement of higher excited states. Excited states with anti-parallel spins are found to involve a considerable amount of entanglement even for an arbitrarily weak (but non zero) interaction. This minimum amount of entanglement increases monotonically with the state’s energy. Finally, the connection between entanglement and the Hartree-Fock approximation in the Moshinsky model is addressed. The quality of the ground-state Hartree-Fock approximation is shown to deteriorate, and the corresponding correlation energy to grow, as the entanglement of the (exact) ground state increases. The present work goes beyond previous related studies because we fully take into account the identical character of the two constituting particles in the entanglement calculations, and provide analytical, exact results both for the ground and the first few excited states.  相似文献   

20.
在非线性克尔介质和光场的相互作用基础之上,提出了一个纠缠相干态(包括多模和高模纠缠)的光学实现方案。发现通过适当选择场的初态,相互作用时间和广义贝尔测量,能产生多模和高维纠缠相干态。同时发现当输入模的态为相干态和叠加数态的情况下,非线性克尔相互作用可产生纠缠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号