首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although most of the early research studies on fractional-order systems were based on the Caputo or Riemann–Liouville fractional-order derivatives, it has recently been proven that these methods have some drawbacks. For instance, kernels of these methods have a singularity that occurs at the endpoint of an interval of definition. Thus, to overcome this issue, several new definitions of fractional derivatives have been introduced. The Caputo–Fabrizio fractional order is one of these nonsingular definitions. This paper is concerned with the analyses and design of an optimal control strategy for a Caputo–Fabrizio fractional-order model of the HIV/AIDS epidemic. The Caputo–Fabrizio fractional-order model of HIV/AIDS is considered to prevent the singularity problem, which is a real concern in the modeling of real-world systems and phenomena. Firstly, in order to find out how the population of each compartment can be controlled, sensitivity analyses were conducted. Based on the sensitivity analyses, the most effective agents in disease transmission and prevalence were selected as control inputs. In this way, a modified Caputo–Fabrizio fractional-order model of the HIV/AIDS epidemic is proposed. By changing the contact rate of susceptible and infectious people, the atraumatic restorative treatment rate of the treated compartment individuals, and the sexual habits of susceptible people, optimal control was designed. Lastly, simulation results that demonstrate the appropriate performance of the Caputo–Fabrizio fractional-order model and proposed control scheme are illustrated.  相似文献   

2.
孔新雷  吴惠彬 《物理学报》2017,66(8):84501-084501
由于非线性,最优控制问题通常依赖于数值求解,即通过离散目标泛函和受控运动方程转化为一有限维的非线性最优化问题.最优控制问题中的受控运动方程在表示为受控Birkhoff方程的形式之后,可以利用受控Birkhoff方程的离散变分差分格式进行离散.与按照传统差分格式近似受控运动方程相比,此途径可以诱导更加真实可靠的非线性最优化问题,进而也会诱导更加精确有效的离散最优控制.应用于航天器交会对接问题,该种数值求解最优控制问题的方法在较大时间步长的情况下仍然求得了一个有效实现交会对接的离散最优控制.模拟结果验证了该方法的有效性.  相似文献   

3.
Lv Longjin  Fu-Yao Ren  Wei-Yuan Qiu 《Physica A》2010,389(21):4809-1752
In this paper, in order to establish connection between fractional derivative and fractional Brownian motion (FBM), we first prove the validity of the fractional Taylor formula proposed by Guy Jumarie. Then, by using the properties of this Taylor formula, we derive a fractional Itô formula for H∈[1/2,1), which coincides in form with the one proposed by Duncan for some special cases, whose formula is based on the Wick Product. Lastly, we apply this fractional Itô formula to the option pricing problem when the underlying of the option contract is supposed to be driven by a geometric fractional Brownian motion. The case that the drift, volatility and risk-free interest rate are all dependent on t is also discussed.  相似文献   

4.
A comparative analysis among the possible types of initial conditions including (or not) derivatives in the Riemann-Liouville sense for incommensurate fractional differential systems with distributed delays is proposed. The provided analysis is essentially based on the possibility to attribute physical meaning to the initial conditions expressed in terms of Riemann-Liouville fractional derivatives. This allows the values of the initial functions for the mentioned initial conditions to be obtained by appropriate measurements or observations. In addition, an initial problem with non-continuous initial conditions partially expressed in terms of Riemann-Liouville fractional derivatives is considered and existence and uniqueness of a (1 ? α)-continuous solution of this initial problem is proved.  相似文献   

5.
In this paper, a fractional 4D chaotic financial model with optimal control is investigated. The fractional derivative used in this financial model is Atangana–Baleanu derivative. The existence and uniqueness conditions of solutions for the proposed model are derived based on Mittag-Leffler law. Optimal control is incorporated into the model to maximize output. The Adams–Moulton scheme of the Atangana–Baleanu derivative is utilized to obtain the numerical results which produce new attractors. Euler-Lagrange optimality conditions are determined for the fractional 4D chaotic financial model. The numerical results show that the memory factor has a great influences on the dynamics of the model.  相似文献   

6.
Fuzzy logic control has been used frequently in tuning network control system (NCS) due to its on-line dynamic static non-linear match and several remarkable fractional-order controllers have achieved satisfactory control performance when applied to NCS in present years, therefore, in this paper, a novel fractional fuzzy logic controller which combined the fractional algorithm and fuzzy logic control together has been proposed to deal with fixed and random network induced delays in closed-loop feedback systems. The comparisons of set-point tracking performances of fractional fuzzy logic PID controller (FFuzzyPID), conventional fuzzy logic PID controller(FuzzyPID), fractional optimal PID controller (FOPID), and optimal PID controller(OPID) on a representative plant with fixed and random network delays have been shown with simulations. The simulation results indicate that fractional fuzzy logic controller has higher capability to handle network delays compared with other controllers in most cases.  相似文献   

7.
基于自适应模糊控制的分数阶混沌系统同步   总被引:1,自引:0,他引:1       下载免费PDF全文
陈晔  李生刚  刘恒 《物理学报》2016,65(17):170501-170501
本文主要研究了带有未知外界扰动的分数阶混沌系统的同步问题.基于分数阶Lyapunov稳定性理论,构造了分数阶的参数自适应规则以及模糊自适应同步控制器.在稳定性分析中主要使用了平方Lyapunov函数.该控制方法可以实现两分数阶混沌系统的同步,使得同步误差渐近趋于0.最后,数值仿真结果验证了本文方法的有效性.  相似文献   

8.
H-type motion platform with linear motors is widely used in two-degrees-of-freedom motion systems, and one-direction dual motors need to be precisely controlled with strict synchronization for high precision performance. In this paper, a synchronous control method based on model decoupling is proposed. The dynamic model of an H-type air floating motion platform is established and one direction control using two motors with position dependency coupling is decoupled and converted into independent position and rotation controls, separately. For the low damping second-order oscillation system of the rotation control loop, a new fractional order biquad filtering method is proposed to generate an antiresonance peak to improve the phase and control gain of the open loop system, which can ensure system stability and quick attenuation for external disturbances. In the multiple-degree-of-freedom decoupled control loops, a systematic feedback controller design methodology is proposed to satisfy the given frequency domain design specifications; a feed-forward control strategy is also applied to compensate the disturbance torque caused by the platform motion. The simulation and experimental results demonstrate that the proposed synchronization control method is effective, and achieves better disturbance rejection performance than the existing optimal cancellation filtering method and biquad filtering method.  相似文献   

9.
离散混沌系统的最小能量控制   总被引:4,自引:0,他引:4       下载免费PDF全文
刘丁  钱富才  任海鹏  孔志强 《物理学报》2004,53(7):2074-2079
对于离散混沌系统的最小能量控制问题,提出了一种框架性方法,该方法具有通用性.首先,设计一个二次目标函数,同时把混沌系统分解为线性部分和非线性部分两项和.然后,提出了求解非线性最优控制问题的两级算法:第一级对混沌系统中的非线性部分进行预估,以使原系统变为带有常数项的线性系统;第二级用动态规划求解一个非典型线性二次最优控制问题,并把解返回第一级,第一级根据第二级的解对非线性部分重新预估.这样通过两级间不断的信息交换,最终得到混沌系统的最优控制律.该方法不仅实现了对混沌系统的控制,而且在整个控制过程中消耗的控制能量最小. 关键词: 混沌系统 两级优化 最优控制  相似文献   

10.
In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fractional order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more practical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective.  相似文献   

11.
How to improve the flexibility of limited communication resources to meet the increasing requirements of data services has become one of the research hotspots of the modern wireless communication network. In this paper, a novel social-aware motivated relay selection method is put forward to allocate the energy efficiency (EE) resources for the device-to-device (D2D) communication. To improve system flexibility, a D2D user is selected to act as a relay named D2D-relay instead of the traditional cellular relay. The optimal relay selection strategy is formulated by searching the maximum trust value that is obtained by assessing the link stability and social connections between two users. Then, the resource allocation problem, which turns out to be a mixed-integer nonlinear fractional programming (MINLFP) problem, is solved by maximizing the total EE under physical constraint and social constraint synthetically. To improve the solution efficiency, a novel iterative algorithm is proposed by integrating the Dinkelbach theory and Lagrange dual decomposition method. Simulation results demonstrate the effectiveness of the proposed scheme. Compared with the existing social-blind and social-aware schemes, it significantly improves the probability of successful relay selection and total EE of the D2D pairs.  相似文献   

12.
Fractional order version of a dynamical system introduced by Yu and Wang (Engineering, Technology & Applied Science Research, 2, (2012) 209–215) is discussed in this article. The basic dynamical properties of the system are studied. Minimum effective dimension 0.942329 for the existence of chaos in the proposed system is obtained using the analytical result. For chaos detection, we have calculated maximum Lyapunov exponents for various values of fractional order. Feedback control method is then used to control chaos in the system. Further, the system is synchronized with itself and with fractional order financial system using active control technique. Modified Adams-Bashforth-Moulton algorithm is used for numerical simulations.  相似文献   

13.
本文研究复杂网络动力学模型的无向网络牵制控制的优化选点及节点组重要性排序问题.根据牵制控制的同步准则,网络的牵制控制同步取决于网络的Laplacian删后矩阵的最小特征值.因此,通过合理选择受控节点集得到一个较大的Laplacian删后矩阵最小特征值,是牵制控制优化选点问题的核心所在.基于Laplacian删后矩阵最小特征值的图谱性质,本文提出了多个受控节点选取的递归迭代算法,该算法适用于任意类型的网络.通过BA无标度网络、NW小世界网络及一些实际网络中的仿真实验表明:该算法在控制节点数较少时,能有效找到最优受控节点集.最后讨论了在复杂网络牵制控制背景下节点组重要性排序问题,提出节点组的重要性排序与受控节点的数目有关.  相似文献   

14.
In this paper we study general symmetries for optimal control problems making use of the geometric formulation proposed in [7]. This framework allows us to reduce the number of equations associated with optimal control problems with symmetry and compare the solutions of the original system with the solutions of the reduced one. The reconstruction of the optimal controls starting from the reduced problem is also explored.  相似文献   

15.
This paper investigates the problem of energy efficient relay precoder design in multiple-input multiple-output cognitive relay networks (MIMO-CRNs). This is a non-convex fractional programming problem, which is traditionally solved using computationally expensive optimization methods. In this paper, we propose a deep learning (DL) based approach to compute an approximate solution. Specifically, a deep neural network (DNN) is employed and trained using offline computed optimal solution. The proposed scheme consists of an offline data generation phase, an offline training phase, and an online deployment phase. The numerical results show that the proposed DNN provides comparable performance at significantly lower computational complexity as compared to the conventional optimization-based algorithm that makes the proposed approach suitable for real-time implementation.  相似文献   

16.
基于比较系统方法的分数阶混沌系统脉冲同步控制   总被引:1,自引:0,他引:1       下载免费PDF全文
马铁东  江伟波  浮洁 《物理学报》2012,61(9):90503-090503
针对一类分数阶混沌系统的同步问题, 提出基于比较系统理论的脉冲同步方法. 通过构造新的响应系统, 可将原分数阶同步误差系统转化为整数阶同步误差系统, 基于Lyapunov稳定性理论与脉冲微分方程理论, 给出一组新的分数阶混沌系统全局渐近同步判据. 特别地, 当脉冲间距与脉冲控制增益为常数时, 可获得更为简单和实用的同步判据. 与现有结果相比, 所得充分条件更为严格和实用. 通过对分数阶Chen系统同步问题的数值仿真研究, 验证了所提方法的有效性和可行性.  相似文献   

17.
Integral form of the space-time-fractional Schrödinger equation for the scattering problem in the fractional quantum mechanics is studied in this paper. We define the fractional Green’s function for the space-time fractional Schrödinger equation and express it in terms of Fox’s H-function and in a computable series form. The asymptotic formula of the Green’s function for large argument is also obtained, and applied to study the fractional quantum scattering problem. We get the approximate scattering wave function with correction of every order.  相似文献   

18.
In this paper, an optimal tracking control scheme is proposed for a class of discrete-time chaotic systems using the approximation-error-based adaptive dynamic programming (ADP) algorithm. Via the system transformation, the optimal tracking problem is transformed into an optimal regulation problem, and then the novel optimal tracking control method is proposed. It is shown that for the iterative ADP algorithm with finite approximation error, the iterative performance index functions can converge to a finite neighborhood of the greatest lower bound of all performance index functions under some convergence conditions. Two examples are given to demonstrate the validity of the proposed optimal tracking control scheme for chaotic systems.  相似文献   

19.
刘恒  李生刚  孙业国  王宏兴 《物理学报》2015,64(7):70503-070503
针对带有非对称控制增益的不确定分数阶混沌系统的同步问题设计了模糊自适应控制器. 模糊逻辑系统用来逼近未知的非线性函数, 非对称的控制增益矩阵被分解为一个未知的正定矩阵、一个对角线上元素为+1或-1的已知对角矩阵和 一个未知的上三角矩阵的乘积. 基于分数阶Lyapunov稳定性理论构造了模糊控制器以及分数阶的参数自适应律, 在保证所有变量有界的情况下实现驱动系统和响应系统的同步. 在分数阶系统稳定性分析中给出了一种平方Lyapunov函数的使用方法, 根据此方法很多针对整数阶系统的控制方法可以推广到分数阶系统中. 最后数值仿真结果验证了所提控制方法的可行性.  相似文献   

20.
In this paper, the inverse synchronization problem of fractional-order dynamical systems is investigated. A general explicit coupling via an open-plus-closed-loop control for inverse synchronization of two arbitrary unidirectionally or bidirectionally coupled fractional-order systems is proposed. The inverse synchronization is proved analytically based on the stability theorem of the fractional differential equations. A key feature of this proposed scheme is that it can be applied not only to nonchaotic but also to chaotic fractional-order systems whenever they exhibit regular or irregular oscillations. Feasibility of the proposed inverse synchronization scheme is illustrated through numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号