首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sub-Saharan Africa has been the epicenter of the outbreak since the spread of acquired immunodeficiency syndrome (AIDS) began to be prevalent. This article proposes several regression models to investigate the relationships between the HIV/AIDS epidemic and socioeconomic factors (the gross domestic product per capita, and population density) in ten countries of Sub-Saharan Africa, for 2011–2016. The maximum likelihood method was used to estimate the unknown parameters of these models along with the Newton–Raphson procedure and Fisher scoring algorithm. Comparing these regression models, there exist significant spatiotemporal non-stationarity and auto-correlations between the HIV/AIDS epidemic and two socioeconomic factors. Based on the empirical results, we suggest that the geographically and temporally weighted Poisson autoregressive (GTWPAR) model is more suitable than other models, and has the better fitting results.  相似文献   

2.
3.
申永军  杨绍普  邢海军 《物理学报》2012,61(15):150503-150503
研究了含两类分数阶微分项的线性单自由度振子, 通过平均法得到了系统的近似解析解. 在近似解中, 两类分数阶微分项的系数和阶次均以等效线性阻尼和等效线性刚度的形式影响着系统的动力学特性, 这一点和现有文献中大多数直接将分数阶微分项归类为阻尼进行处理是完全不同的. 对近似解析解和数值解进行了比较, 二者符合精度很高, 证明了该结果的准确性. 然后分析了两类分数阶微分项的系数和阶次对系统响应特性的影响, 发现两类分数阶微分项的系数和阶次都既可以影响系统的共振振幅, 又可以影响系统的共振频率. 最后研究了第二类分数阶微分项对共振频率的影响, 指出了在振动控制工程中如何通过选取合适的第二类分数阶微分项的系数达到满意的控制效果.  相似文献   

4.
In this paper we present the natural convection flow of an incompressible viscous fluid subject to Newtonian heating and constant mass diffusion using a recently developed definition of the Caputo–Fabrizio fractional derivative. Boundary layer equations in dimensionless form are obtained by means of dimensionless variables. The expressions for the temperature, concentration and velocity fields are obtained in the Laplace transformed domain. The inverse Laplace transform for the temperature, concentration and velocity field are found numerically by means of Stehfest's and Tzou's algorithms. A comparative analysis has been carried between the Caputo–Fabrizio and the Caputo fractional model obtained by Vieru (2015) through graphical illustration. At the end, we can see the impact of the flow parameters, including the new fractional parameter, on the flow which is presented graphically. As a result, the fractional viscous fluid model with the Caputo–Fabrizio fractional derivative has a higher velocity than with the Caputo.  相似文献   

5.
This research article shows how the pricing of derivative securities can be seen from the context of stochastic optimal control theory and information theory. The financial market is seen as an information processing system, which optimizes an information functional. An optimization problem is constructed, for which the linearized Hamilton–Jacobi–Bellman equation is the Black–Scholes pricing equation for financial derivatives. The model suggests that one can define a reasonable Hamiltonian for the financial market, which results in an optimal transport equation for the market drift. It is shown that in such a framework, which supports Black–Scholes pricing, the market drift obeys a backwards Burgers equation and that the market reaches a thermodynamical equilibrium, which minimizes the free energy and maximizes entropy.  相似文献   

6.
Recently, Anderson and Ulness [Adv. Dyn. Syst. Appl. 10, 109 (2015)] utilized the concept of the proportional derivative controller to modify the conformable derivatives. In parallel to Anderson’s work, Caputo and Fabrizio [Progr. Fract. Differ. Appl. 1, 73 (2015)] introduced a fractional derivative with exponential kernel whose corresponding fractional integral does not have a semi-group property. Inspired by the above works and based on a special case of the proportional-derivative, we generate Caputo and Riemann-Liouville generalized proportional fractional derivatives involving exponential functions in their kernels. The advantage of the newly defined derivatives which makes them distinctive is that their corresponding proportional fractional integrals possess a semi-group property and they provide undeviating generalization to the existing Caputo and Riemann-Liouville fractional derivatives and integrals. The Laplace transform of the generalized proportional fractional derivatives and integrals are calculated and used to solve Cauchy linear fractional type problems.  相似文献   

7.
In this article, time fractional Fornberg-Whitham equation of He’s fractional derivative is studied. To transform the fractional model into its equivalent differential equation, the fractional complex transform is used and He’s homotopy perturbation method is implemented to get the approximate analytical solutions of the fractional-order problems. The graphs are plotted to analysis the fractional-order mathematical modeling.  相似文献   

8.
Modeling of wall-bounded turbulent flows is still an open problem in classical physics, with relatively slow progress in the last few decades beyond the log law, which only describes the intermediate region in wall-bounded turbulence, i.e., 30–50 y+ to 0.1–0.2 R+ in a pipe of radius R. Here, we propose a fundamentally new approach based on fractional calculus to model the entire mean velocity profile from the wall to the centerline of the pipe. Specifically, we represent the Reynolds stresses with a non-local fractional derivative of variable-order that decays with the distance from the wall. Surprisingly, we find that this variable fractional order has a universal form for all Reynolds numbers and for three different flow types, i.e., channel flow, Couette flow, and pipe flow. We first use existing databases from direct numerical simulations (DNSs) to lean the variable-order function and subsequently we test it against other DNS data and experimental measurements, including the Princeton superpipe experiments. Taken together, our findings reveal the continuous change in rate of turbulent diffusion from the wall as well as the strong nonlocality of turbulent interactions that intensify away from the wall. Moreover, we propose alternative formulations, including a divergence variable fractional (two-sided) model for turbulent flows. The total shear stress is represented by a two-sided symmetric variable fractional derivative. The numerical results show that this formulation can lead to smooth fractional-order profiles in the whole domain. This new model improves the one-sided model, which is considered in the half domain (wall to centerline) only. We use a finite difference method for solving the inverse problem, but we also introduce the fractional physics-informed neural network (fPINN) for solving the inverse and forward problems much more efficiently. In addition to the aforementioned fully-developed flows, we model turbulent boundary layers and discuss how the streamwise variation affects the universal curve.  相似文献   

9.
Wu-Yang Zhu 《中国物理 B》2022,31(6):60204-060204
The memristor is also a basic electronic component, just like resistors, capacitors and inductors. It is a nonlinear device with memory characteristics. In 2008, with HP's announcement of the discovery of the TiO2 memristor, the new memristor system, memory capacitor (memcapacitor) and memory inductor (meminductor) were derived. Fractional-order calculus has the characteristics of non-locality, weak singularity and long term memory which traditional integer-order calculus does not have, and can accurately portray or model real-world problems better than the classic integer-order calculus. In recent years, researchers have extended the modeling method of memristor by fractional calculus, and proposed the fractional-order memristor, but its concept is not unified. This paper reviews the existing memristive elements, including integer-order memristor systems and fractional-order memristor systems. We analyze their similarities and differences, give the derivation process, circuit schematic diagrams, and an outlook on the development direction of fractional-order memristive elements.  相似文献   

10.
This paper constructs a new physical system, i.e., the fractional-order Rabinovich system, and investigates its stability, chaotic behaviors, chaotic control and matrix projective synchronization. Firstly, two Lemmas of the new system's stability at three equilibrium points are given and proved. Next, the largest Lyapunov exponent, the corresponding bifurcation diagram and the chaotic behaviors are studied. Then, the linear and nonlinear feedback controllers are designed to realize the system's local asymptotical stability and the global asymptotical stability, respectively. It's particularly significant that, the fractional matrix projective synchronization between two Rabinovich systems is achieved and two kinds of proofs are provided for Theorem 4.1. Especially, under certain degenerative conditions, the fractional matrix projective synchronization can be reduced to the complete synchronization, anti-synchronization, projective synchronization and modified projective synchronization of the fractional-order Rabinovich systems. Finally, all the theoretical analysis is verified by numerical simulation.  相似文献   

11.
This article proposes a new fractional-order discrete-time chaotic system, without equilibria, included two quadratic nonlinearities terms. The dynamics of this system were experimentally investigated via bifurcation diagrams and largest Lyapunov exponent. Besides, some chaotic tests such as the 0–1 test and approximate entropy (ApEn) were included to detect the performance of our numerical results. Furthermore, a valid control method of stabilization is introduced to regulate the proposed system in such a way as to force all its states to adaptively tend toward the equilibrium point at zero. All theoretical findings in this work have been verified numerically using MATLAB software package.  相似文献   

12.
Finite-time stability of a class of fractional-order neural networks is investigated in this paper.By Laplace transform,the generalized Gronwall inequality and estimates of Mittag-Leffler functions,sufficient conditions are presented to ensure the finite-time stability of such neural models with the Caputo fractional derivatives.Furthermore,results about asymptotical stability of fractional-order neural models are also obtained.  相似文献   

13.
Finite-time stability of a class of fractional-order neural networks is investigated in this paper. By Laplace transform, the generalized Gronwall inequality and estimates of Mittag-Leffler functions, sufficient conditions are presented to ensure the finite-time stability of such neural models with the Caputo fractional derivatives. Furthermore, results about asymptotical stability of fractional-order neural models are also obtained.  相似文献   

14.
基于自适应模糊控制的分数阶混沌系统同步   总被引:1,自引:0,他引:1       下载免费PDF全文
陈晔  李生刚  刘恒 《物理学报》2016,65(17):170501-170501
本文主要研究了带有未知外界扰动的分数阶混沌系统的同步问题.基于分数阶Lyapunov稳定性理论,构造了分数阶的参数自适应规则以及模糊自适应同步控制器.在稳定性分析中主要使用了平方Lyapunov函数.该控制方法可以实现两分数阶混沌系统的同步,使得同步误差渐近趋于0.最后,数值仿真结果验证了本文方法的有效性.  相似文献   

15.
A new fourth-order memristor chaotic oscillator is taken to investigate its fractional-order discrete synchronisation. The fractional-order differential model memristor system is transformed to its discrete model and the dynamic properties of the fractional-order discrete system are investigated. A new method for synchronising commensurate and incommensurate fractional discrete chaotic maps are proposed and validated. Numerical results are established to support the proposed methodologies. This method of synchronisation can be applied for any fractional discrete maps. Finally the fractional-order memristor system is implemented in FPGA to show that the chaotic system is hardware realisable.  相似文献   

16.
张路  邓科  罗懋康 《中国物理 B》2012,21(9):90505-090505
We present a new fractional-order resistor-capacitor controller and a novel control method based on the fractional-order controller to control an arbitrary three-dimensional fractional chaotic system. The proposed control method is simple, robust, and theoretically rigorous, and its anti-noise performance is satisfactory. Numerical simulations are given for several fractional chaotic systems to verify the effectiveness and the universality of the proposed control method.  相似文献   

17.
Mei Li 《中国物理 B》2021,30(12):120503-120503
This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks (FOCVCNNs) with time-delay. The chaotic behaviors of a class of fractional-order complex-valued neural network are investigated. Meanwhile, based on the complex-valued inequalities of fractional-order derivatives and the stability theory of fractional-order complex-valued systems, a new adaptive controller and new complex-valued update laws are proposed to construct a synchronization control model for fractional-order complex-valued chaotic neural networks. Finally, the numerical simulation results are presented to illustrate the effectiveness of the developed synchronization scheme.  相似文献   

18.
With the aim of improving the reconstruction of stochastic evolution equations from empirical time-series data, we derive a full representation of the generator of the Kramers–Moyal operator via a power-series expansion of the exponential operator. This expansion is necessary for deriving the different terms in a stochastic differential equation. With the full representation of this operator, we are able to separate finite-time corrections of the power-series expansion of arbitrary order into terms with and without derivatives of the Kramers–Moyal coefficients. We arrive at a closed-form solution expressed through conditional moments, which can be extracted directly from time-series data with a finite sampling intervals. We provide all finite-time correction terms for parametric and non-parametric estimation of the Kramers–Moyal coefficients for discontinuous processes which can be easily implemented—employing Bell polynomials—in time-series analyses of stochastic processes. With exemplary cases of insufficiently sampled diffusion and jump-diffusion processes, we demonstrate the advantages of our arbitrary-order finite-time corrections and their impact in distinguishing diffusion and jump-diffusion processes strictly from time-series data.  相似文献   

19.
This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.  相似文献   

20.
In this paper, we present a generalized unified method for finding multiwave solutions of the time-fractional (2+1)-dimensional Nizhnik–Novikov–Veselov equations. The fractional derivatives are described in the modified Riemann–Liouville sense. The fractional complex transform has been suggested to convert fractional-order differential equations with modified Riemann–Liouville derivatives into integer-order differential equations, and the reduced equations can be solved by symbolic computation. Multiauxiliary equations have been introduced in this method to obtain not only multisoliton solutions but also multiperiodic or multielliptic solutions. It is shown that the considered method is very effective and convenient for solving wide classes of nonlinear partial differential equations of fractional order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号