首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
High quality ZnO films were grown on c-plane sapphire substrate using low temperature ZnO buffer layer by plasma-assisted molecular beam epitaxy. The film deposited at 720 °C showed the lowest value of full-width at half maximum for the symmetric (0002) diffraction peak of about 86 arcsec. The highest electron mobility in the films was about 103-105 cm2/V s. From temperature-dependent Hall effect measurements, the mobility strongly depends on the dislocation density at low temperature region and the polar optical phonon scattering at high temperature, respectively. Moreover, by obtaining the activation energy of the shallow donors, it was supposed that hydrogen was source of n-type conductivity in as-grown ZnO films.  相似文献   

2.
Al and N codoped ZnO thin films were grown on n-Si (100) substrate by sputtering technique. Hall effect measurements of as-grown films exhibited n-type conduction, however 500 °C Ar annealed codoped films showed p-type conductivity with a hole concentration of 9.9 × 1016 cm− 3, resistivity of 15.95 Ω-cm and hole mobility of 3.95 cm2/Vs, respectively. Codoped ZnO thin films were found to be highly c-axis oriented with good crystal quality. A neutral acceptor-bound exciton and donor-acceptor-pair emissions that appeared at room temperature photoluminescence measurement verify p-type conduction in Al and N codoped ZnO film. The current-voltage characteristics of p-n heterojunction evidently showed a diode like rectifying behaviour.  相似文献   

3.
In this work, 650 nm polycrystalline SnS thin films were grown by thermal evaporation of high purity tin sulfide powder at 250 °C substrate temperature, followed by post deposition annealing at 200 °C and 300 °C for 2, 4 and 6 h, and at 400 °C for 2 and 4 h in argon ambient. The XRD pattern of the as-deposited and annealed SnS films led to the conclusion that the as-deposited films were polycrystalline in nature with preferentially oriented along (1 1 1) direction. The direct bandgap of all the films was found to be observed between 1.33 and 1.53 eV. Except for annealing at 400 °C all the films were nearly stoichiometric in nature, suggesting lower rate of desulfurization at that ambient. However, higher annealing temperature has resulted in the segregation of tin phase. All the films showed good absorption in the visible range. The as-deposited and annealed films showed p-type conductivity. Hall measurement revealed the carrier concentration and mobility ranging from 1015 to 1016 cm−3 and 0.8 to 31.6 cm2 V−1 s−1 respectively. The photoconductivity measurements of all the SnS films were carried out by recording the lowering of resistance of the respective films with time under illumination.  相似文献   

4.
Ga-doped CdS thin films, with different [Ga]/[Cd] ratios, were grown using chemical bath deposition. The effect of Ga-doping on optical properties and bandgap of CdS films is investigated. Resistivity, carrier density, and mobility of doped films were acquired using Hall effect measurements. Crystal structure as well as crystal quality and phase transition were determined using X-ray diffraction (XRD) and Micro-Raman spectroscopy. Film morphology was studied using scanning electron microscopy, while film chemistry and binding states were studied using X-ray photoelectron spectroscopy (XPS). A minimum bandgap of 2.26 eV was obtained at [Ga]/[Cd] ratio of 1.7 × 10−2. XRD studies showed Ga3+ ions entering the lattice substitutionally at low concentration, and interstitially at high concentration. Phase transition, due to annealing, as well as induced lattice defects, due to doping, were detected by Micro-Raman spectroscopy. The highest carrier density and lowest resistivity were obtained at [Ga]/[Cd] ratio of 3.4 × 10−2. XPS measurements detect an increase in sulfur deficiency in doped films.  相似文献   

5.
Influence of annealing temperature on the properties of Sb-doped ZnO thin films were studied. Hall measurement results indicated that the Sb-doped ZnO annealed at 950 °C was p-type conductivity. X-ray diffraction (XRD) results indicated that the Sb-doped ZnO thin films prepared at the experiments are high c-axis oriented. It was worth noting that p-type sample had the worst crystallinity. The measurements of low-temperature photoluminescence (PL) spectra indicate that the sample annealed at the temperatures of 950 °C showed strong acceptor-bound exciton (A0X) emission, and confirmed that it is related to Sb-doping by comparing with the undoped ZnO low-temperature PL spectrum.  相似文献   

6.
We report the influence of Al concentration on electrical, structural, optical and morphological properties of Al-As codoped p-ZnO thin films using RF magnetron sputtering. Al-As codoped p-ZnO films with different Al concentrations were fabricated using As back diffusion from the GaAs substrate and sputtering Al2O3 mixed ZnO targets (1, 2 and 4 at%). The grown films were investigated by Hall effect measurement, X-ray diffraction (XRD), electron probe microanalysis (EPMA), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and atomic force microscopy (AFM) to study the electrical, structural, optical and morphological properties of the films. From the XRD, it was observed that both full-width at half-maximum (FWHM) and c-axis lattice constant have similar trends with respect to Al concentration. Hall measurements showed that the hole concentration increases as the Al concentration increases from 1015 to 1020 cm−3. The increase in hole concentration upon codoping was supported by the red shift in the near-band-edge (NBE) emission observed from room temperature PL spectra. The proposed p-type mechanism due to AsZn-2VZn complex was confirmed by low temperature PL and XPS analysis. The low FWHM, resistivity and peak-to-valley roughness observed by XRD, Hall measurement and AFM, respectively, suggest that 1 at% Al-doped ZnO:As film is the best codoped film.  相似文献   

7.
Polycrystalline In2Se3 semiconducting thin films were prepared by using relatively simple chemical bath deposition method at room temperature by the reaction between indium chloride, tartaric acid, hydrazine hydrate and sodium selenosulphate in an aqueous alkaline medium. Various preparative conditions of thin film deposition are outlined. The as grown films were found to be transparent, uniform, well adherent and red in color. The films were characterized using X-ray diffraction (XRD), scanning electron microscopy, atomic absorption spectroscopy and energy dispersive atomic X-ray diffraction (EDAX). The XRD analysis of the film showed the presence of polycrystalline nature with hexagonal crystal structure. SEM study revels that the grains are homogenous, without cracks or pinholes and well covers the glass substrate. The optical absorption and electrical conductivity was measured. The direct optical band gap value for the films was found to be of the order of 2.35 eV at room temperature and have specific electrical conductivity of the order of 10−2 (Ω cm)−1 showing n-type conduction mechanism. The utility of the adapted technique is discussed from the view-point of applications considering the optoelectric and structural data.  相似文献   

8.
We have investigated on the molecular beam epitaxy (MBE) of Te-doped GaSb films on ZnTe buffer. Te-doped GaSb (GaSb:Te) films with and without ZnTe buffer were grown on (0 0 1) GaAs substrates. GaSb:Te/ZnTe/GaAs film revealed higher mobility (=631 cm2/V s) in comparison to GaSb:Te/GaAs film (=249 cm2/V s). To explain the higher mobility of GaSb:Te on ZnTe buffer, dislocation density and temperature dependence of Hall measurement results were analyzed. Temperature dependence of Hall measurement shows strong influence of the dislocation scattering, which indicates that dislocation reduction by the ZnTe buffer enhances the carrier mobility of GaSb films.  相似文献   

9.
Ga and N co-doped p-type ZnO thin films were epitaxially grown on sapphire substrate using magnetron sputtering technique. The process of synthesized Ga and N co-doped ZnO films was performed in ambient gas of N2O. Hall measurement shows a significant improvement of p-type characteristics with rapid thermal annealing (RTA) process in N2 gas flow, where more N acceptors are activated. The film rapid thermal annealed at 900 °C in N2 ambient revealed the highest carrier concentration of 9.36 × 1019 cm−3 and lowest resistivity of 1.39 × 10−1 Ω cm. In room and low temperature photoluminescence measurements of the as grown and RTA treated film, donor acceptor pair emission and exciton bound to acceptor recombination at 3.25 and 3.357 eV, respectively, were observed.  相似文献   

10.
Hall effect measurements were performed on epitaxial CoxTi1−xO2–δ thin films grown on (0 0 1) LaAlO3 by reactive RF magnetron co-sputter deposition. Magnetization measurements reveal ferromagnetic behavior in MH loop at room temperature for CoxTi1−xO2–δ thin films for which x?0.02. An anomalous Hall effect was observed for Co0.10Ti0.90O2−δ films grown with the partial pressure of water P(H2O)=4×10−4 Torr or less. These films exhibit a positive ordinary Hall coefficient and a positive magnetoresistance. X-ray diffraction on films grown under these conditions shows evidence for TinO2n−1 phase due to the deficiency of oxygen. In contrast, Hall measurements taken for undoped and Co-doped TiO2 thin films grown under more oxidizing conditions show only the ordinary Hall effect with a negative Hall coefficient consistent with n-type conduction. For these films, the magnetoresistance was positive and increased monotonically with increasing magnetic field. The results suggest that Co-doped TinO2n−1 may be a dilute magnetic semiconducting oxide for which the carriers couple to the spin polarization.  相似文献   

11.
An attempt has been made to realize p-ZnO by directly doping (codoping) GaP into ZnO thin films. GaP codoped ZnO thin films of different concentrations (1, 2 and 4 mol%) have been grown by RF magnetron sputtering. The grown films on sapphire substrate have been characterized by X-ray diffraction (XRD), Hall measurement, Photoluminescence (PL) and Energy dispersive spectroscopy (EDS) to validate the p-type conduction. XRD result shows that all the films have been preferentially oriented along (0 0 2) orientation. The decrease of full-width at half maximum (FWHM) with increase in GaP doping depicts the decrease in native donor defects. Hall measurement shows that among the three films, 2 and 4 mol% GaP doped ZnO shows p-conductivity due to the sufficient amount of phosphorous incorporation. It has been found that low resistivity (2.17 Ωcm) and high hole concentration (1.8×1018 cm−3) for 2% GaP codoped ZnO films due to best codoping. The red shift in near-band-edge (NBE) emission and donar-acceptor-pair (DAP) and neutral acceptor bound recombination (A°X) observed by room temperature and low temperature (10 K) PL, respectively, well acknowledged the formation of p-ZnO. The incorporated phosphorous in the film has been also confirmed by EDS analysis.  相似文献   

12.
ZnO films were deposited on c-plane sapphire substrates by metal-organic chemical vapor deposition (MOCVD). Annealing treatments for as-deposited samples were performed in different atmosphere under various pressures in the same chamber just after growth. The effect of annealing atmosphere on the electrical, structural, and optical properties of the deposited films has been investigated by means of X-ray diffraction (XRD), atomic force microscope (AFM), Hall effect, and optical absorption measurements. The results indicated that the electrical and structural properties of the films were highly influenced by annealing atmosphere, which was more pronounced for the films annealed in oxygen ambient. The most significant improvements for structural and electrical properties were obtained for the film annealed in oxygen under the pressure of 60 Pa. Under the optimum annealing condition, the lowest resistivity of 0.28 Ω cm and the highest mobility of 19.6 cm2 v−1 s−1 were obtained. Meanwhile, the absorbance spectra turned steeper and the optical band gap red shifted back to the single-crystal value.  相似文献   

13.
Single crystalline ZnO films were grown on c-plane GaN/sapphire (0 0 0 1) substrates by molecular beam epitaxy. Cr+ ions were implanted into the ZnO films with three different doses, i.e., 1 × 1014, 5 × 1015, and 3 × 1016 cm−2. The implantation energy was 150 keV. Thermal treatment was carried out at 800 °C for 30 s in a rapid thermal annealing oven in flowing nitrogen. X-ray diffraction (XRD), atomic force microscopy, Raman measurements, transmission electron microscopy and superconducting quantum interference device were used to characterize the ZnO films. The results showed that thermal annealing relaxed the stress in the Cr+ ions implanted samples and the implantation-induced damage was partly recovered by means of the proper annealing treatment. Transmission electron microscopy measurements indicated that the first five monolayers of ZnO rotated an angle off the [0 0 0 1]-axis of the GaN in the interfacial layer. The magnetic-field dependence of magnetization of annealed ZnO:Cr showed ferromagnetic behavior at room temperature.  相似文献   

14.
p-Type ZnO thin films have been realized via doping Li as acceptor by using pulsed laser deposition. In our experiment, Li2CO3 was used as Li precursor, and the growth temperature was varied from 400 to 600 °C in pure O2 ambient. The Li-doped ZnO film prepared at 450 °C possessed the lowest resistivity of 34 Ω cm with a Hall mobility of 0.134 cm2 V−1 s−1 and hole concentration of 1.37 × 1018 cm−3. X-ray diffraction (XRD) measurements showed that the Li-doped ZnO films grown at different substrate temperatures were of completely (0 0 2)-preferred orientation.  相似文献   

15.
The ZnO films were deposited on c-plane sapphire, Si (0 0 1) and MgAl2O4 (1 1 1) substrates in pure Ar ambient at different substrate temperatures ranging from 400 to 750 °C by radio frequency magnetron sputtering. X-ray diffraction, photoluminescence and Hall measurements were used to evaluate the growth temperature and the substrate effects on the properties of ZnO films. The results show that the crystalline quality of the ZnO films improves with increasing the temperature up to 600 °C, the crystallinity of the films is degraded as the growth temperature increasing further, and the ZnO film with the best crystalline quality is obtained on sapphire at 600 °C. The intensity of the photoluminescence and the electrical properties strongly depend on the crystalline quality of the ZnO films. The ZnO films with the better crystallinity have the stronger ultraviolet emission, the higher mobility and the lower residual carrier concentration. The effects of crystallinity on light emission and electrical properties, and the possible origin of the n-type conductivity of the undoped ZnO films are also discussed.  相似文献   

16.
Intrinsic, P- and B-doped hydrogenated amorphous silicon thin films were prepared by plasma-enhanced chemical vapor deposition technique. As-deposited samples were thermally annealed at the temperature of 800 °C to obtain the doped nanocrystalline silicon (nc-Si) films. The microstructures, optical and electronic properties have been evaluated for the undoped and doped nanocrystalline films. X-ray photoelectron spectroscopy (XPS) measurements demonstrated the presence of the substitutional boron and phosphorous in the doped films. It was found that thermal annealing can efficiently activate the dopants in films accompanying with formation of nc-Si grains. Based on the temperature-dependent conductivity measurements, it was shown that the activation of dopant by annealing increased the room temperature dark conductivity from 3.4 × 10−4 S cm−1 to 5.3 S cm−1 for the P-doped films and from 1.28 × 10−3 S cm−1 to 130 S cm−1 for the B-doped films. Meanwhile, the corresponding value of conductivity activation energies was decreased from 0.29 eV to 0.03 eV for the P-doped films and from 0.3 eV to 5.6 × 10−5 eV for the B-doped films, which indicated the doped nc-Si films with high conductivity can be achieved with the present approach.  相似文献   

17.
ZnS films have been deposited on glass substrates by close-spaced evaporation (CSE) technique. The films were grown at different temperatures in the range, 200-350 °C. The layers have been characterized with X-ray diffractometer (XRD), atomic force microscope (AFM), energy dispersive analysis of X-rays (EDAX) and optical spectrophotometer to evaluate the quality of the layers for photovoltaic applications. The studies showed that the optimum substrate temperature for the growth of ZnS layers was 300 °C. The films grown at these temperatures exhibited cubic structure with nearly stoichiometric composition. The AFM data revealed that the films had nano-sized grains with a grain size of ∼40 nm. The optical studies exhibited direct allowed transition with an energy band gap of 3.61 eV. The other structural and optical parameters such as lattice stress, dislocation density, refractive index and extinction coefficient were also evaluated. The temperature-dependent conductivity measured in the range, 303-523 K showed a change in the conduction mechanism at 120 °C. The activation energy values evaluated using the temperature dependence of electrical conductivity are 7 and 29 meV at low and high temperature regions, respectively.  相似文献   

18.
Perovskites thin films with the composition La0.6Ca0.4MnO3 doped with 20% Fe, were prepared by pulsed reactive crossed beam laser ablation, where a synchronized reaction gas pulse interacts with the ablation plume. The films were grown on various substrates and the highest colossal magnetoresistance ratio (CMR) was detected by Hall measurements for films grown on LaAlO3 (1 0 0), which was selected as substrate for further investigations.Several growth parameters, such as substrate temperature and target to substrate distance were varied to analyze their influence on the film properties.The structure of the deposited thin films was characterized by X-ray diffraction and atomic force microscope, while Rutherford backscattering (RBS) was used to determine the film stoichiometry. The electrical properties were determined by Hall effect measurements in a magnetic field of 0.51 T.These measurements reveal that the amplitude of the CMR ratio depends strongly on the substrate and that the oxygen content influences the temperature where the transition from semiconductor to metal is observed.  相似文献   

19.
Thermoelectric properties of single crystalline CexSr1−xTiO3 films (0 ≤ x ≤ 0.5) have been studied by using combinatorial pulsed-laser deposition. Temperature gradient method was used for identifying an optimum growth temperature for SrTiO3 homoepitaxial growth, at which both oxygen stoichiometry and persisting layer-by-layer growth mode could be accomplished. Electrical conductivity (σ) and Seebeck coefficient (S) were measured at room temperature for the composition-spread films grown at the optimized temperature and found to be considerably higher than those reported for bulk poly-crystalline compounds. Hall measurement revealed that carrier density linearly increased with increasing x, suggesting that a trivalent Ce ions substituted divalent Sr ions to supply electrons. A maximum power factor (S2σ) was obtained for the x = 0.2 film, being 7 and 14 μW/K2 cm at 300 and 900 K, respectively.  相似文献   

20.
Transparent conducting thin films of fluorine-doped tin oxide (FTO) have been deposited onto the preheated glass substrates of different thickness by spray pyrolysis process using SnCl4·5H2O and NH4F precursors. Substrate thickness is varied from 1 to 6 mm. The films are grown using mixed solvent with propane-2-ol as organic solvent and distilled water at optimized substrate temperature of 475 °C. Films of thickness up to 1525 nm are grown by a fine spray of the source solution using compressed air as a carrier gas. The films have been characterized by the techniques such as X-ray diffraction, optical absorption, van der Pauw technique, and Hall effect. The as-deposited films are preferentially oriented along the (2 0 0) plane and are of polycrystalline SnO2 with a tetragonal crystal structure having the texture coefficient of 6.19 for the films deposited on 4 mm thick substrate. The lattice parameter values remain unchanged with the substrate thickness. The grain size varies between 38 and 48 nm. The films exhibit moderate optical transmission up to 70% at 550 nm. The figure of merit (φ) varies from 1.36×10−4 to 1.93×10−3 Ω−1. The films are heavily doped, therefore degenerate and exhibit n-type electrical conductivity. The lowest sheet resistance (Rs) of 7.5 Ω is obtained for a typical sample deposited on 4 mm thick substrate. The resistivity (ρ) and carrier concentration (nD) vary over 8.38×10−4 to 2.95×10−3 Ω cm and 4.03×1020 to 2.69×1021 cm−3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号