首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thorn-like BN nanostructures that the nanosize hexagonal BN (h-BN) layers are randomly stacked looking like thorns were synthesized using thermal chemical vapor deposition of B/B2O3 under the flow of NH3 at 1200 °C. They can grow self-assembled forming the microsize lumps, and also deposit as sheathing layers on the pre-grown SiC nanowires with a controlled thickness in the range 20-100 nm. The spreading of the thorn-like BN layers as the sheathing layers results in a significantly enhanced surface area, 2400 m2/g.  相似文献   

2.
Boron nitride (BN) nanotubes, nanohorns, nanocoils were synthesized by annealing Fe4N and B powders at 1000 °C for 1 h in nitrogen gas atmosphere. Especially, Fe-filled BN nanotubes were produced, and investigated by high-resolution electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, electron diffraction and energy dispersive X-ray spectroscopy, which indicates that the [110] of Fe is parallel to the BN nanotube axis. Formation mechanism of Fe-filled BN nanotube was speculated based on these results.  相似文献   

3.
The preparation of one-dimensional assemblies of PbS nanoparticles is described. By treating the suspension of PbCl2 powders in aqueous thioacetamide solution at 120 °C for 18 h, PbS nanoparticles were synthesized in regular chain-like patterns. The particles were less than 100 nm in sizes, and were organized into micron-length assemblies. The starting agents have much influence on the morphology of the products. The possible growth mechanism is also discussed.  相似文献   

4.
Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol–gel method. The catalyst precursor was fired at 450 °C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50–75 μm) and sample B (smaller than 50 μm). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of α-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing α-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50–75 μm showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 μm. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.  相似文献   

5.
A mixed Mn-Zn-Fe carbonate was prepared by precipitation of metal ions with ammonium carbonate and control of pH=7. Nanocrystalline Mn-Zn ferrite powders were synthesized by thermal decomposition of the carbonate precursor at 500 °C in air. The mean crystallite size of the ferrite particles is 14 nm with a specific surface of 74 m2/g. The magnetization at 5 K of the Mn-Zn ferrite powders (66 emu/g) is smaller than the saturation magnetization of the bulk material. Hysteresis loop measurements indicate ferrimagnetic behavior at 5 and 298 K with a small coercivity at room temperature.  相似文献   

6.
Ni doped titanate nanotubes were synthesized by hydrothermal method using Ni doped rutile TiO2 nanopowders as a starting material. The electrochemical properties were investigated by cyclic voltammmetric methods. The microstructure and morphology of the synthesized powders were characterized by XRD (X-ray diffraction), and HRTEM (high resolution transmission electron microscopy). Ni doped nanotubes were composed of H2Ti2O5·H2O with outer and inner diameter of ∼10 nm and 6 nm and showed a initial discharge capacity of 305 mAh/g with poor cycling performance. However, after firing, the Ni doped nanotubes revealed better cycling performance due to lower reaction with hydrate and smaller diameter of the tubes.  相似文献   

7.
Titania nanotubes are synthesized via hydrothermal treatment of TiO2 powders in NaOH solution at 110 °C for 90 h, followed by annealing at 400 °C. The morphology of nanotubes is characterized by field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Microscopic observations on the transformation process indicate that the nanotubes retain their shapes after the annealing process. The crystalline structure and composition are examined by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX). The results confirm the absence of impurity peaks and the crystal structure change from nanotubes to anatase phase after annealing treatment. The average specific surface area of the particles is probed using gas adsorption-desorption measurements. The prepared tubular samples exhibit greater specific surface areas and higher pore volumes than the precursor. Moreover, it is apparent that the hydrothermal treatment modifies the optical properties of the titania samples and red-shifts the UV absorption to a band gap energy of 3.04 eV after annealing treatment.  相似文献   

8.
CdS particles with crystallite size of 5-12 nm have been prepared via acoustic wave stimulated (sonochemical) route and microwave initiated combustion method. X-ray line broadening and transmission electron microscopy (TEM) suggest that sonochemical powders are more amorphous (5-10 nm) compared to microwave-synthesized sulphides (10-15 nm). The photoluminescent (PL) properties of powders with size <10 nm show a clearly blue shifted, resolved emission with full-width at half-maxima (FWHM) ∼100 nm, while powders with size >15 nm show dominant blue to green narrow emission with FWHM ∼60 nm. The mechanistic details of the synthetic route appear to affect the morphology and consequently the PL properties to a significant extent.  相似文献   

9.
Cobalt (Co) nanocapsules coated with boron nitride (BN) layers were synthesized by annealing of ammine complex. KBH4 and [Co(NH3)6]Cl3 were used as starting materials, and annealed these powders at 500–1000 °C with flowing nitrogen gas. Formation of fcc-Co nanocapsules coated with BN layers was observed from X-ray diffraction patterns and high-resolution electron microscopy. Particle size of fcc-Co prepared at 1000 °C with flowing 100 sccm N2 gas was approximately 40 nm, and the values of saturation magnetization and coercivity were 74.5 emu/g and 88 Oe, respectively. Good oxidation- and wear-resistances were obtained by encapsulating Co nanoparticles with BN layers.  相似文献   

10.
Aligned ZnO nanotubes with the outer radius of about 200 nm were synthesized by a two-step approach, which involves electrospinning and sputtering techniques. The ZnO nanotubes are polycrystalline hexagonal structure, indicted by XRD and TEM analysis. The ZnO nanotubes show sensing property to H2. The sensor response of the aligned nanotubes to 100 ppm H2 increases from 2.3 to 3.6 with the temperature increasing from 200 to 400 °C. Beside, the sensor response of the ZnO nanotubes increases compared with that of the ZnO film prepared under the same condition.  相似文献   

11.
Single-walled carbon nanotubes (SWCNTs) and few-walled carbon nanotubes (FWCNTs) have been selectively synthesized by plasma enhanced chemical vapor deposition at a relative low temperature (550 °C) by tuning the thickness of iron catalyst. The parametric study and the optimization of the nanotube growth were undertaken by varying inductive power, temperature, catalyst thickness, and plasma to substrate distance. When an iron film of 3-5 nm represented the catalyst thickness for growing FWCNT arrays, SWCNTs were synthesized by decreasing the catalyst thickness to 1 nm. The nanotubes were characterized by field emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Electron field emission properties of the nanotubes indicate that the SWCNTs exhibit lower turn-on field compared to the FWCNTs, implying better field emission performance.  相似文献   

12.
Tantalum nitride (TaN) nanocrystals have been successfully synthesized at 650 °C through a solid-state reaction in an autoclave. The X-ray powder diffraction pattern indicates that the product is a mixture of hexagonal and metastable cubic TaN. Transmission electron microscopy images and selected area electron diffraction patterns show that the hexagonal TaN crystallites consist of nanorod with a typical size of about 50×1000 nm and the cubic TaN crystallites are composed of uniform particles with an average size of about 30 nm.  相似文献   

13.
Three kinds of laser boronizing composite coatings were in situ synthesized on Ti substrate by using powders of B, BN and B4C as starting materials. Microstructures of the laser boronizing composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM); and their worn surface morphologies were also observed by using SEM. Moreover, the friction and wear behavior of the boronizing composite coatings under dry sliding condition were evaluated using a UMT-2MT friction and wear tester. It was found that all the three types of laser boronizing composite coatings had higher microhardness and better wear resistance than pure Ti substrate; and their microstructure and wear resistance varied with varying pre-placed powders of B, BN, and B4C. Under the same dry sliding test conditions, the wear resistance of the three kinds of laser boronizing composite coatings, i.e., sample 1 prepared from pre-placed B, sample 2 obtained from pre-placed BN, and sample 3 fabricated from pre-placed B4C, is ranked in an order of sample 1 > sample 2 > sample 3, which, surprisingly, well conforms to their order of hardness and friction coefficients.  相似文献   

14.
This paper reports the synthesis of nanocrystalline powders of Co-doped ZnO (i.e. Zn0.9Co0.1O (ZCO)) diluted magnetic semiconductor by a simple method using acetate salts of Zn and Co, and polyvinyl pyrrolidone as precursors. The morphology and crystalline size of the synthesized powders were evaluated by scanning electron microscopy and transmission electron microscopy (TEM). The ZCO powders consist of both nanoparticles with particle sizes of ∼50–100 nm and nanorods with diameters of ∼100–200 and ∼200–500 nm in length. The X-ray diffraction and TEM results indicated that the synthesized ZCO powders had the pure wurtzite structure without any significant change in the structure affected by Co substitution. Optical absorption measurements showed absorption bands indicating the presence of Co ions in substitution of Zn ions. Room-temperature magnetization results revealed a paramagnetic behavior for the ZCO precursor (as grown sample) and a ferromagnetic behavior for the ZCO powders calcined in air at 873 K for 1 h.  相似文献   

15.
Thermo-responsive cellulosic nanolayers were prepared from methylcellulose (MC), which is known to have a unique lower critical solution temperature. Thiosemicarbazide (TSC) was selectively introduced into the MC reducing end groups, and the corresponding MC-TSC derivative was spontaneously chemisorbed on an Au substrate at 4 °C to give MC self-assembled monolayers (SAMs). Linear MC chains were stably fixed onto the Au substrate, yielding an MC-SAM of thickness ca. 15 nm with a root mean square value less than 1 nm. The MC-SAM surface exhibited thermally responsive wetting characteristics; the water contact angle was found to rise and fall around 70 °C, possibly due to the solid-state phase transition of the MC nanolayers resulting from the inherent gelation of MC molecules in water. Such wetting behavior was shown to be reversible following repeated heating and cooling. The MC-SAM immersed in salt solution revealed lower phase transition temperatures, and an increase in sodium chloride concentration ranging from 0.0 to 1.0 M brought about a dramatic decrease in the apparent phase transition temperature from ca. 70 to 30 °C. For the purposely designed MC nanolayers, such controllable wetting properties are expected to prompt growing interest in the applications of cellulosic biopolymer interfaces.  相似文献   

16.
Synthesis and morphology of boron nitride nanotubes and nanohorns   总被引:1,自引:0,他引:1  
Boron nitride (BN) nanotubes have been synthesized by evaporating a mixture of boron and gallium oxide in the presence of ammonia gas. The synthesized BN nanotubes exhibit a well-crystallized concentric structure with diameters less than 30 nm, and no carbon contamination or defects could be observed, while the BN nanotubes with large diameters usually show a number of defects. Some BN nanohorn structures could also be observed in the product. The carbon-free growth of BN nanotubes was explained based on the vapor–liquid–solid growth mechanism, and the catalytic activity of liquid gallium for BN one-dimensional growth was also demonstrated. Received: 16 April 2002 / Accepted: 25 May 2002 / Published online: 19 July 2002  相似文献   

17.
CuO nanostructures at different morphologies were synthesized in controlled manner using a simple low-temperature solvothermal technique. Controlling the pH of content the reaction mixture, nanoparticles, nanorods and nanocloud CuO structures were synthesized at temperature of 100-150 °C with excellent reproducibility. High-resolution electron microscopy revealed the well crystalline nature of all the nanostructures with preferential growth along the [0 0 2] direction for linear structures. Photoluminescence spectrum of the as-grown nanostructures revealed oxygen-vacancy-related defects in them. The average sizes of NP-CuO (nanoparticles of CuO) at different morphologies were between 40 and 100 nm. The structure, morphology and size of NP-CuO were determined by X-ray diffraction powder (XRD), scanning electron microscopy (SEM), solid state Photo Luminescent (PL) and EDAX analysis.  相似文献   

18.
Synthesis of boron nitride nanotubes by an oxide-assisted chemical method   总被引:1,自引:0,他引:1  
We report a new method for the synthesis of boron nitride (BN) nanotubes employing a two-step process in which some oxides have found to catalyze the growth of BN nanotubes. In the first step, a precursor containing B–N–O–Fe/Mg was prepared by ball milling a mixture of B, B2O3, Fe2O3 and MgO (1:7:2:1 mass ratio) in NH3 for 3 h. BN nanotubes (diameter: 20–100 nm) were grown in the second step from this precursor by isothermal annealing at 1,350 °C in NH3 for about 4 h. XRD, SEM and HR-TEM studies elucidated the spindle-like morphology of these nanotubes of hexagonal crystal structure. The Raman spectrum showed the peak broadening and shifts to higher frequency. The present method showed that some oxides assisted the growth of BN nanotubes. A possible reaction mechanism on the formation of BN nanotubes in the presence of these oxides is discussed.  相似文献   

19.
Thin films of Ti-B-N with different N contents were deposited on Si(1 0 0) at room temperature by reactive unbalanced close-field dc-magnetron sputtering using three Ti targets and one TiB2 target in an Ar-N2 gas mixture. The effect of N content on bonding structure, microstructure, phase configuration, surface roughness and mechanical properties have been investigated using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), plan-view and cross-sectional high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and microindentation measurements. It was found that the N content significantly affected phase segregation and microstructure. The nitrogen-free TiB0.65 films showed an amorphous compound consisting of Ti and TiB2 (Ti-TiB2). After adding about 28 at.% N, Ti was preferentially bonded to N to form TiN, accompanying with formation of small amounts of TiB and BN bonds. At this stage they combined TiB2 to form a two-phase nanocomposite with microstructures comprising of nanocrystalline (nc-) TiN phase in nitrogen-containing amorphous (a-) TiB2 matrix. Addition of more N promoted formation of BN bonding at cost of TiB2, which resulted in formation of nanocomposite nc-TiN/a-(TiB2, BN) thin films. A small grain less than 8 nm in size was found at low N content, and the grain size increased with increasing N content. A low microhardness value of about 20 GPa was obtained in the amorphous Ti-TiB2 compound, and a maximum microhardness value of about 50 GPa was achieved in nc-TiN/a-TiB2. A decrease of microhardness took place after formation of BN (i.e. amorphous matrix composed by both TiB2 and BN) with further increasing N content, and a hardness value of about 35 GPa was followed at high N contents. The surface roughness strongly depended on the phase configuration. The higher the mole fraction of nanocrystalline TiN phase, the rougher the surface became.  相似文献   

20.
In this paper, a new method of preparation of uniform porous hydroxyapatite biomaterials was reported. In order to obtain uniform porous biomaterials, disk samples were formed by the mixture of hydroxyapatite (HAP) powders and monodispersed polystyrene microspheres, and then HAP uniform porous materials with different diameter and different porosity (diameter: 436 ± 25 nm, 892 ± 20 nm and 1890 ± 20 nm, porosity: 46.5%, 41.3% and 34.7%, respectively) were prepared by sintering these disk samples at 1250 °C for 5 h. The pure phase of HAP powders fabricated by the hydrothermal technology was confirmed by X-ray diffraction (XRD). The surface and size distribution of pores in HAP biomaterials were observed by scanning electron microscopy (SEM), and the pore size distribution in porous HAP biomaterials was tested by mercury intrusion method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号