首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal silicon oxide layers have been implanted at 600 °C with N++C+, N++B+ and N++C++B+ ions. Two different implantation doses have been chosen in order to introduce peak concentrations at the projected range comparable to the SiO2 density. Some pieces of the samples have been annealed in conventional furnace at 1200 °C for 3 h. After annealing, cathodoluminescence measurements show in all cases a main broad band centered at 460 nm (2.7 eV). High doses of C implantation give rise to an intensity attenuation. Phases formed in the oxides have been investigated by Fourier transform infrared spectroscopy before and after annealing. The spectra suggest that N incorporates as BN and probably as a ternary BCN phase in the triply implanted samples, while C seems to bond mainly with B. Boron is also bonded to O in B-O-Si configuration. Depth structure and quantitative composition of the films were deduced from fittings of the spectroscopic ellipsometry measurements.  相似文献   

2.
The aim of this work is to improve the mechanical properties of AISI 4140 steel substrates by using a TiN[BCN/BN]n/c-BN multilayer system as a protective coating. TiN[BCN/BN]n/c-BN multilayered coatings via reactive r.f. magnetron sputtering technique were grown, systematically varying the length period (Λ) and the number of bilayers (n) because one bilayer (n = 1) represents two different layers (tBCN + tBN), thus the total thickness of the coating and all other growth parameters were maintained constant. The coatings were characterized by Fourier transform infrared spectroscopy showing bands associated with h-BN bonds and c-BN stretching vibrations centered at 1400 cm−1 and 1100 cm−1, respectively. Coating composition and multilayer modulation were studied via secondary ion mass spectroscopy. Atomic force microscopy analysis revealed a reduction in grain size and roughness when the bilayer number (n) increased and the bilayer period decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period (Λ) was 80 nm (n = 25), yielding the relative highest hardness (∼30 GPa) and elastic modulus (230 GPa). The values for the hardness and elastic modulus are 1.5 and 1.7 times greater than the coating with n = 1, respectively. The enhancement effects in multilayered coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain increased hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayered coatings taking into account the thickness reduction at individual single layers that make up the multilayered system. The Hall-Petch model based on dislocation motion within layered and across layer interfaces has been successfully applied to multilayered coatings to explain this hardness enhancement.  相似文献   

3.
3C-SiC(0 0 1) surfaces are considerably rough with the roughness root mean square value (Rms) of 1.3 nm, but the surfaces become considerably smooth (i.e., Rms of 0.5 nm) by heat treatment in pure hydrogen at 400 °C. Two-step nitric acid (HNO3) oxidation (i.e., immersion in ∼40 wt% HNO3 followed by that in 68 wt% HNO3) performed after the hydrogen treatment can oxidize 3C-SiC at extremely low temperature of ∼120 °C, forming thick SiO2 (e.g., 21 nm) layers. With no hydrogen treatment, the leakage current density of the 〈Al/SiO2/3C-SiC〉 metal-oxide-semiconductor (MOS) diodes is high, while that for the MOS diodes with the hydrogen treatment is considerably low (e.g., ∼10−6 A/cm2 at the forward gate bias of 1 V) due to the formation of uniform thickness SiO2 layers. The MOS diodes with the hydrogen treatment show capacitance-voltage curves with accumulation, depletion, and deep-depletion characteristics.  相似文献   

4.
The work is concerned with the high-temperature heat treatment of an Al-12 wt.% Si alloy coated by an electroless Ni-P layer. The electroless deposition took place on a pre-treated substrate in a bath containing nickel hypophosphite, nickel lactate and lactic acid. Resulting Ni-P deposit showed a thickness of about 8 μm. The coated samples were heat-treated at 200-550 °C/1-24 h. LM, SEM, EDS and XRD were used to investigate phase transformations. Adherence to the substrate was estimated from the scratch test and microhardness of the heat-treated layers was also measured. It is found that various phase transformations occur, as both temperature and annealing time increase. These include (1) amorphous Ni-P → Ni + Ni3P, (2) Al + Ni → Al3Ni, (3) Ni3P → Ni12P5 + Ni, (4) Ni12P5 → Ni2P + Ni, and (5) Al3Ni + Ni → Al3Ni2. The formation of intermetallic phases, particularly Al3Ni2, leads to significant surface hardening, however, too thick layers of intermetallics reduce the adherence to the substrate. Based on the growth kinetics of the intermetallic phases, diffusion coefficients of Ni in Al3Ni and Al3Ni2 at 450-550 °C are estimated as follows: D(Al3Ni, 450 °C) ≈ 6 × 10−12 cm2 s−1, D(Al3Ni, 550 °C) ≈ 4 × 10−11 cm2 s−1, D(Al3Ni2, 450 °C) ≈ 1 × 10−12 cm2 s−1 and D(Al3Ni2, 550 °C) ≈ 1 × 10−11 cm2 s−1. Mechanisms of phase transformations are discussed in relation to the elemental diffusion.  相似文献   

5.
R.S. Dubey  D.K. Gautam 《Optik》2011,122(6):494-497
In this paper, we studied the optical and physical properties of electrochemically prepared porous silicon layers. The atomic force microscopy analysis showed that the etching depth, pore diameter and surface roughness increase as the etching time increased from 30 to 50 mA/cm2. By tuning two current densities J1 = 50 mA/cm2 and J2 = 30 mA/cm2, two samples of 1D porous silicon photonic crystals were fabricated. The layered structure of 1D photonic crystals has been confirmed by scanning electron microscopy measurement which showed white and black strips of two distinct refractive index layers. Finally, the measured reflectance spectra of 1D porous silicon photonic crystals were compared with simulated results.  相似文献   

6.
Biaxially textured YBa2Cu3O7−x (YBCO) films were grown on inclined-substrate-deposited (ISD) MgO-textured metal substrates by pulsed laser deposition. CeO2 was deposited as a buffer layer prior to YBCO growth. CeO2 layers of different thickness were prepared to evaluate the thickness dependence of the YBCO films. The biaxial alignment features of the films were examined by X-ray diffraction 2θ-scans, pole-figure, ?-scans and rocking curves of Ω angles. The significant influence of the CeO2 thickness on the structure and properties of the YBCO films were demonstrated and the optimal thickness was found to be about 10 nm. High values of Tc = 91 K and Jc = 5.5 × 105 A/cm2 were obtained on YBCO films with optimal CeO2 thickness at 77 K in zero field. The possible mechanisms responsible for the dependence of the structure and the properties of the YBCO films on the thickness of the CeO2 buffer layers are discussed.  相似文献   

7.
We report the modification of molecular beam epitaxy grown strain-relaxed single crystalline Si1−xGex layers for x=0.5 and 0.7 as a result of irradiation with 100 MeV Au ions at 80 K. The samples were structurally characterized by Rutherford backscattering spectrometry/channeling, transmission electron microscopy (TEM) and high-resolution X-ray diffraction before and after irradiation with fluences of 5×1010, 1×1011 and 1×1012 ions/cm2, respectively. No track formation was detected in both the samples from TEM studies and finally, the crystalline to amorphous phase transformation at 1×1012 ions/cm2 was examined to be higher for Si0.3Ge0.7 layers compared to Si0.5Ge0.5 layers.  相似文献   

8.
Some results concerning the magnetic, electrical and microstructural properties of multilayer [FeCoBN/Si3N4n films in view of their utilization for manufacturing thin film magnetic inductors are presented. A comparison between the magnetic, electrical and structural properties of FeCoBN and [FeCoBN/Si3N4n thin films is also reported. The [FeCoBN/Si3N4n thin films with the thickness of the FeCoBN layers varied from 10 to 30 nm, exhibit good soft magnetic characteristics and high values for electrical resistivity such as Ms of 172–185 A m2/kg, Hc of 318–1433 A/m and ρ of 82–48×10−7 Ω m, respectively. These physical properties of the samples are discussed in relation with the microstructure of the multilayer system.  相似文献   

9.
Intense blue upconversion emission at 480 nm has been obtained at room temperature in Tm3+-Nd3+ co-doped Ta2O5 channel waveguides fabricated on a Si substrate, when the sample is excited with an infrared laser at 793 nm. The upconversion mechanism is based on the radiative relaxation of the Nd3+ ions (4F3/2 → 4I11/2) at about 1064 nm followed by the absorption of the emitted photons by Tm3+ ions in the 3H4 excited state. A coefficient of energy transfer rate as high as 3 × 10−16 cm3/s has been deduced using a rate equation analysis, which is the highest reported for Tm-Nd co-doped systems. The confinement of the 1064 nm emitted radiation in the waveguide structure is the main reason of the high energy transfer probability between Nd3+ and Tm3+ ions.  相似文献   

10.
Completely amorphous Fe-Si layers are formed by Fe implantation into Si substrate at a dosage of 5×1015 cm−2 using a metal vapor vacuum arc (MEVVA) ion source under 80 kV extraction voltage and cryogenic temperature. After thermal annealing, β-FeSi2 precipitates are formed in Si matrix. The influence of impurities in these amorphous Fe-Si layers on the photoluminescence (PL) from β-FeSi2 precipitates is investigated. PL is found to be significantly enhanced by optimizing the impurity concentration and annealing scheme. After 60 s of rapid thermal annealing (RTA) at 900 °C, β-FeSi2 precipitates in medium boron-doped Si substrate give the strongest PL intensity without boron out-diffusion from them.  相似文献   

11.
We have developed low temperature formation methods of SiO2 layers which are applicable to gate oxide layers in thin film transistors (TFT) by use of nitric acid (HNO3). Thick (>10 nm) SiO2 layers with good thickness uniformity (i.e., ±4%) can be formed on 32 cm × 40 cm substrates by the two-step nitric acid oxidation method in which initial and subsequent oxidation is performed using 40 and 68 wt% (azeotropic mixture) HNO3 aqueous solutions, respectively. The nitric acid oxidation of polycrystalline Si (poly-Si) thin films greatly decreases the height of ridge structure present on the poly-Si surfaces. When poly-Si thin films on 32 cm × 40 cm glass substrates are oxidized at azeotropic point (i.e., 68 wt% HNO3 aqueous solutions at 121 °C), ultrathin (i.e., 1.1 nm) SiO2 layers with a good thickness uniformity (±0.05 nm) are formed on the poly-Si surfaces. When SiO2/Si structure fabricated using plasma-enhanced chemical vapor deposition is immersed in 68 wt% HNO3, oxide fixed charge density is greatly decreased, and interface states are eliminated. The fixed charge density is further decreased by heat treatments at 200 °C, and consequently, capacitance-voltage characteristics which are as good as those of thermal SiO2/Si structure are achieved.  相似文献   

12.
Ni/Ni3Al interface: A density functional theory study   总被引:1,自引:0,他引:1  
The optimal geometries, mechanical and thermal properties, and electronic structures of the three low index (0 0 1), (1 1 0), (1 1 1) Ni/Ni3Al thin film were studied using first principle calculations. Simulated results indicated that Ni and Al atoms in γ phase preferred to place in the hollow site of Ni atoms in γ phase. In hollow site models, electronic states affected by interface localize within 2 atomic layers. While the top site model, electronic states localize within 3 atomic layers. It is also found that hollow site (1 1 0) interface has the best mechanical properties. Hollow site (0 0 1) interface is the most easily formed interface, which has the best thermodynamic properties.  相似文献   

13.
Low-temperature silicon dioxide (SiO2) films were grown on silicon germanium (SiGe) surfaces using the liquid-phase deposition (LPD) method. The growth solutions of LPD-SiO2 are hydrofluorosilicic acid (H2SiF6) and boric acid (H3BO3). It was found that the growth rate increases with increasing temperature and concentration of H3BO3. The Auger electron spectroscopy profile shows that no pileup of Ge atoms occurs at the interface of SiO2/SiGe after the LPD-SiO2 growth. Al/LPD-SiO2/p-SiGe MOS capacitors were prepared to determine capacitance-voltage (C-V) and current-voltage (I-V) characteristics. In our experiments, a low leakage current density of 8.69 × 10−9 A/cm2 under a 2 MV/cm electric field was observed. Such a value is much smaller than those of plasma- and thermal-oxides as a result of no plasma damage and a lower growth temperature. Moreover, lower oxide charges and interface charge densities of 3.82 × 1010 cm−2 and 1.12 × 1011 eV−1 cm−2, respectively, were achieved in our LPD-SiO2 compared to direct photochemical-vapor-deposition-SiO2.  相似文献   

14.
The ultraviolet upconversion luminescence of Tm3+ ions sensitized by Yb3+ ions in oxyfluoride glass when excited by a 975 nm diode laser was studied in this paper. One typical ultraviolet upconversion luminescence lines positioned at 362.3 nm was found. It can be attributed to the five-photon upconversion luminescence transition of 1D2 → 3H6. Several visible upconversion luminescence lines at 451.1 nm, (477.9 nm, 462.5 nm), 648.7 nm, (680.5 nm, 699.5 nm) and (777.5 nm, 800.7 nm) were found also, which results from the fluorescence transitions of five-photon 1D2 → 3F4, three-photon 1G4 → 3H6, three-photon 1G4 → 3F4, two-photon 3F3 → 3H6 and two-photon 3H4 → 3H6 of Tm3+ ion, respectively. The theoretical analysis suggests that the upconversion mechanism of the 362.3 nm 1D2 → 3H6 upconversion luminescence is the cross energy transfer of {3H4(Tm3+) → 3F4(Tm3+), 1G4(Tm3+) → 1D2(Tm3+)} and {1G4(Tm3+) → 3F4(Tm3+), 3H4(Tm3+) → 1D2(Tm3+)} between Tm3+ ions. In addition, the upconversion luminescence of 1G4 and 3H4 state results from the sequential energy transfer {2F5/2(Yb3+) → 2F7/2(Yb3+), 3H4(Tm3+) → 1G4(Tm3+)} and {2F5/2(Yb3+) → 2F7/2(Yb3+), 3F4(Tm3+) → 3F2(Tm3+)} from Yb3+ ions to Tm3+ions, respectively.  相似文献   

15.
ZnO films with different morphologies were deposited on the ITO-coated glass substrate from zinc nitrate aqueous solution at 65 °C by a seed-layer assisted electrochemical deposition route. The seed layers were pre-deposited galvanostatically at different current densities (isl) ranging from −1.30 to −3.0 mA/cm2, and the subsequent ZnO films had been done using the potentiostatic technique at the cathode potential of −1.0 V. Densities of nucleation centers in the seed layers varied with increasing the current density, and the ZnO films on them showed variable morphologies and optical properties. The uniform and compact nanocrystalline ZnO film with (0 0 2) preferential orientation was obtained on seed layer that was deposited under the current density (isl) of −1.68 mA/cm2, which exhibited good optical performances.  相似文献   

16.
Using Czochralski (CZ) pulling method, an Er3+/Yb3+-codoped NaY(WO4)2 crystal was prepared. Absorption spectra, emission spectra and excitation spectra of this crystal were measured at room temperature. Some optical parameters, such as intensity parameters, spontaneous emission probabilities and lifetimes, were calculated from absorption spectra with Judd-Ofelt (J-O) theory. Upconversion luminescence excited by a 970 nm diode laser was studied. In this crystal, green upconversion luminescence is particularly intensive. Energy transfer mechanisms that play an important role in upconversion processes were analyzed. Two cross-relaxation processes: 4G11/2 + 4I9/2 → 2H11/2 (or 4S3/2) + 2H11/2 (or 4S3/2), and 4G11/2 + 4I15/2 → 2H11/2 (or 4S3/2) + 2I13/2, which contribute to the intensive green luminescence under 378 nm excitation, were put forward. Background energy transfer 4G11/2(Er3+) + 2F7/2(Yb3+) → 4F9/2(Er3+) + 2F5/2(Yb3+) was also demonstrated.  相似文献   

17.
We have investigated the temperature and composition dependent photoluminescence (PL) spectra in Ga1−xMnxN layers (where x ≈ 0.1-0.8%) grown on sapphire (0 0 0 1) substrates using the plasma-enhanced molecular beam epitaxy technique. The efficient PL is peaked in the red (1.86 eV), yellow (2.34 eV), and blue (3.29 eV) spectral range. The band-gap energy of the Ga1−xMnxN layers decreased with increasing temperature and manganese composition. The band-gap energy of the Ga1−xMnxN layers was modeled by the Varshni equation and the parameters were determined to be α = 2.3 × 10−4, 2.7 × 10−4, 3.4 × 10−4 eV/K and β = 210, 210, and 230 K for the manganese composition x = 0.1%, 0.2%, and 0.8%, respectively. As the Mn concentration in the Ga1−xMnxN layers increased, the temperature dependence of the band-gap energy was clearly reduced.  相似文献   

18.
The degree of order S of Mn–Ir layers and the exchange anisotropy of Mn–Ir/Co–Fe bilayers were investigated for various chemical compositions of Mn–Ir layers, underlayer materials, and underlayer thicknesses. It was found that: (1) The compositional range over which L12-phase Mn3Ir could be formed is 22–32 at% Ir and giant exchange anisotropy is obtained in this range. (2) Ru is favorable as an underlayer material for avoiding interdiffusion with the Mn–Ir layer during deposition on the temperature elevated substrate. (3) The underlayer thickness could be reduced to 5 nm while maintaining a giant exchange anisotropy in excess of 1 erg/cm2.  相似文献   

19.
Silicon carbide (SiC), as it is well-known, is inaccessible to usual methods of technological processing. Consequently, it is important to search for alternative technologies of processing SiC, including laser processing, and to study the accompanying physical processes. The work deals with the investigation of pulsed laser radiation influence on the surface of 6H-SiC crystal. The calculated temperature profile of SiC under laser irradiation is shown. Structural changes in surface and near-surface layers of SiC were studied by atomic force microscopy images, photoluminescence, Raman spectra and field emission current-voltage characteristics of initial and irradiated surfaces. It is shown that the cone-shaped nanostructures with typical dimension of 100-200 nm height and 5-10 nm width at the edge are formed on SiC surface under nitrogen laser exposure (λ = 0.337 μm, tp = 7 ns, Ep = 1.5 mJ). The average values of threshold energy density 〈Wthn〉 at which formation of nanostructures starts on the 0 0 0 1 and surfaces of n-type 6H-SiC(N), nitrogen concentration nN ≅ 2 × 1018 cm−3, are determined to be 3.5 J/cm2 and 3.0 J/cm2, respectively. The field emission appeared only after laser irradiation of the surface at threshold voltage of 1000 V at currents from 0.7 μA to 0.7 mA. The main role of the thermogradient effect in the processes of mass transfer in prior to ablation stages of nanostructure formation under UV laser irradiation (LI) was determined. We ascertained that the residual tensile stresses appear on SiC surface as a result of laser microablation. The nanostructures obtained could be applied in the field of sensor and emitting extreme electronic devices.  相似文献   

20.
White organic light-emitting devices (WOLEDs) with Mg:Ag/Alq3/Alq3:DCJTB/Alq3/DPVBi/α-NPD/ITO and Mg:Ag/Alq3/DPVBi:DCJTB/Alq3/DPVBi/α-NPD/ITO structures were fabricated with three primary-color emitters of red, green, and blue by using organic molecular-beam deposition. Electroluminescence spectra showed that the dominant white peak for the WOLEDs fabricated with host red-luminescence Alq3 and DPVBi layers did not change regardless of variations in the current. The Commission Inernationale de l'Eclairage (CIE) chromaticity coordinates for the two WOLEDs were stable, and the WOLEDs at 40 mA/cm2 with luminances of 690 and 710 cd/cm2 showed an optimum white CIE chromaticity of (0.33, 0.33). While the luminance yield of the WOLED fabricated with a host red-luminescent Alq3 emitting layer below 30 mA/cm3 was larger than that of the WOLED fabricated with a DPVBi layer, above 30 mA/cm2, the luminance yield of the WOLED fabricated with the DPVBi layer was higher than that of the WOLED with the Alq3 layer and became more stable with increasing current density. These results indicate that WOLEDs fabricated with a host red-luminescence DPVBi layer without any quenching behavior hold promise for potential applications in backlight sources in full-color displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号