首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
The capacity of a brass instrument to generate sounds with strong high-frequency components is dependent on the extent to which its bore profile supports nonlinear sound propagation. At high dynamic levels some instruments are readily sounded in a "cuivre?" (brassy) manner: this phenomenon is due to the nonlinear propagation of sound in ducts of the proportions typical of labrosones (lip-reed aerophones). The effect is also evident at lower dynamic levels and contributes to the overall tonal character of the various kinds of brass instrument. This paper defines a brassiness potential parameter derived from the bore geometries of brass instruments. The correlation of the brassiness potential parameter with spectral enrichment as measured by the spectral centroid of the radiated sound is examined in playing tests using musicians, experiments using sine-wave excitation of instruments, and simulations using a computational tool. The complementary effects of absolute bore size on spectral enrichment are investigated using sine-wave excitation of cylindrical tubes and of instruments, establishing the existence of a trade-off between bore size and brassiness potential. The utility of the brassiness potential parameter in characterizing labrosones is established, and the graphical presentation of results in a 2D space defined by bore size and brassiness potential demonstrated.  相似文献   

2.
浅海内波会引起声传播能量随时间的起伏变化,进而影响水声设备的工作性能.本文利用2015年南海北部一次浅海声场起伏实验数据,对比分析了浅海线性内波和孤立子内波条件下的声传播损失统计特性.在孤立子内波条件下,声传播损失起伏明显加剧,可达11 dB,且分布明显展宽,相对于线性内波的环境,声传播损失起伏可增加5 dB.从简正波...  相似文献   

3.
The shadow visualization method is applied to study the process of loss of stability of the mixing layer of a subsonic axially symmetric turbulent jet under longitudinal internal action of saw-tooth sound waves of finite amplitude. Such action leads to the formation of a system of ring vortices in the mixing layer at the frequency of its intrinsic instability. The interaction of the vortices can be accompanied by sound emission. A similar phenomenon is also observed in turbulent jets for small supercritical pressure fluctuations on a nozzle.  相似文献   

4.
《Physics letters. A》2020,384(21):126419
Currently, complicated structure, incident-angle selectivity, and narrow frequency band are the key drawbacks of the asymmetric acoustic transmission (AAT) devices. Here we tackle these problems by proposing a class of single-layer lossy acoustic metasurfaces. The broadband AAT performance is realized in a broad range of incident angles. When the incident angle is in the range between two critical values, which are derived in this paper, an external sound wave can be converted into an evanescent mode, and the total internal reflection occurs for backward sound. The incident sound wave can be negatively refracted for forward sound if the evanescent mode conversion condition is broken, representing the realization of the AAT. However, the AAT phenomenon cannot be observed outside of the range defined above. The proposed design of highly efficient broad-angle AAT can find applications in sound sensing and noise control.  相似文献   

5.
The use of in situ measurements of hearing protectors' (HPD's) attenuation following the microphone in real ear (MIRE) protocol is increasing. The attenuation is hereby calculated from the difference in sound levels outside the ear and inside the ear canal behind the HPD. Custom-made earplugs have been designed with an inner bore that allows inserting a miniature microphone. A thorough understanding of the difference, henceforth called transfer function, between the sound pressure of interest at the eardrum and the one measured at the inner bore of the HPD is indispensable for optimizing the MIRE technique and extending its field of application. This issue was addressed by measurements on a head-and-torso-simulator and finite difference time domain numerical simulations of the outer ear canal occluded by an earplug. Both approaches are in good agreement and reveal a clear distinction between the sound pressure at the MIRE microphone and at eardrum, but the measured transfer functions appear to be stable and reproducible. Moreover, the most striking features of the transfer functions can be traced down to the geometrical and morphological characteristics of the earplug and ear canal.  相似文献   

6.
该文构造了由两种匀质材料交替分布的径向声子晶体柱壳模型。首先,针对声波在其中的轴对称传播情况进行了理论分析,建立了声波由内向外传播的传递矩阵,进而导出了声压透射系数和隔声量表达式。采用数值分析的方法系统地讨论了径向声子晶体柱壳的隔声特性,并与单一材质柱壳的传播规律进行对比分析,其次,借助有限元仿真分析的手段对数值结果进行了验证。最后,详细分析了内外流体的特性阻抗对径向声子晶体柱壳隔声特性的影响,得到了相应的参数影响规律。研究表明,径向声子晶体柱壳存在声波带隙,导致其在带隙范围内的隔声效果远远优于单材质柱壳,并且该结构的固有特性突破了质量定律的限制;声波带隙内表面局域态现象出现与否由内外声场和结构场共同决定。  相似文献   

7.
Results of a computer simulation study are presented for acoustic propagation in a shallow water, anisotropic ocean environment. The water column is characterized by random volume fluctuations in the sound speed field that are induced by internal gravity waves, and this variability is superimposed on a dominant summer thermocline. Both the internal wave field and resulting sound speed perturbations are represented in three-dimensional (3D) space and evolve in time. The isopycnal displacements consist of two components: a spatially diffuse, horizontally isotropic component and a spatially localized contribution from an undular bore (i.e., a solitary wave packet or solibore) that exhibits horizontal (azimuthal) anisotropy. An acoustic field is propagated through this waveguide using a 3D parabolic equation code based on differential operators representing wide-angle coverage in elevation and narrow-angle coverage in azimuth. Transmission loss is evaluated both for fixed time snapshots of the environment and as a function of time over an ordered set of snapshots which represent the time-evolving sound speed distribution. Horizontal acoustic coherence, also known as transverse or cross-range coherence, is estimated for horizontally separated points in the direction normal to the source-receiver orientation. Both transmission loss and spatial coherence are computed at acoustic frequencies 200 and 400 Hz for ranges extending to 10 km, a cross-range of 1 km, and a water depth of 68 m. Azimuthal filtering of the propagated field occurs for this environment, with the strongest variations appearing when propagation is parallel to the solitary wave depressions of the thermocline. A large anisotropic degradation in horizontal coherence occurs under the same conditions. Horizontal refraction of the acoustic wave front is responsible for the degradation, as demonstrated by an energy gradient analysis of in-plane and out-of-plane energy transfer. The solitary wave packet is interpreted as a nonstationary oceanographic waveguide within the water column, preferentially funneling acoustic energy between the thermocline depressions.  相似文献   

8.
Making MRI quieter   总被引:3,自引:0,他引:3  
We have mitigated acoustic noise in a 1.5 T cylindrical MRI scanner equipped with epoxy-potted, shielded gradients. It has been widely assumed that MRI acoustic noise comes overwhelmingly from vibrations of the gradient assembly. However, with vibration-isolated gradients contained in an airtight enclosure, we found the primary sources of acoustic noise to be eddy-current-induced vibrations of metal structures such as the cryostat inner bore and the rf body coil. We have elucidated the relative strengths of source-pathways of acoustic noise and assembled a reduced-acoustic-noise demonstration MRI system. This scanner employed a number of acoustic noise reduction measures including a vacuum enclosure of a vibrationally isolated gradient assembly, a low-eddy-current rf coil and a non-conducting inner bore cryostat. The demonstration scanner reduced, by about 20 dBA, the acoustic noise levels in the patient bore to 85 dBA and below for several typical noisy pulse sequences. The noise level standing near the patient bore is 71 dBA and below. We have applied Statistical Energy Analysis to develop a vibroacoustic model of the MR system. Our model includes vibrational sources and acoustic pathways to predict acoustic noise and provides a good spectral match above 400 Hz to experimentally measured sound levels. This tool enables us to factor acoustics into the design parameters of new MRI systems.  相似文献   

9.
Numerical and analytical studies are performed on how unstable fluctuations of the parameters of the medium in a deep sea affect the focusing of sound pulses using the time reversal method. The simplest situation, when point sources and receivers are used for emission and reception, is considered. Pulse propagation in the direct and backward directions is numerically simulated by the parabolic equation method. Calculations are performed for sound signals with frequencies of several tens of hertz. It is shown that, in the presence of sound velocity fluctuations caused by random internal waves, noticeable attenuation of the field amplitude at the center of the focal spot can be observed beginning from distances of 200 to 400 km. As the central frequency of the pulsed signal increases, the effect of nonstationarity of the perturbation on the focusing is amplified. This phenomenon is explained qualitatively and quantitatively in the geometrical optics approximation.  相似文献   

10.
A device for aeration and mixing of cell or organelle suspensions in a vertical bore NMR magnet is described. Multiple external sensors (e.g., ion-selective electrodes) may be immersed in the suspension within the bore of the magnet. The sensors are positioned to avoid noise due to contact with gas bubbles and proximity to the probe head. The required sample volume is minimised. The modular design of components permits the use of the device in magnets of various internal dimensions, or with probe heads of different sample tube diameter, by modification of the simpler components of the assembly.  相似文献   

11.
Hollow-fiber delivery of high-power pulsed Nd:YAG laser light   总被引:1,自引:0,他引:1  
Matsuura Y  Hanamoto K  Sato S  Miyagi M 《Optics letters》1998,23(23):1858-1860
We propose hollow fibers for delivery of high-peak-power pulsed Nd:YAG laser light. Hollow fibers with an internal polymer layer were fabricated by a liquid-phase coating technique. We reduced the losses of the fibers in the near-infrared region by producing a silver film that was very smooth owing to use of an ultrasonic wave for mixing of the silver and the reducer solutions in the silver-plating process. The straight losses of the 1-m-long polymer-coated fibers were 0.3 dB for the 700-mum bore size and 0.1 dB for the 1000-mum bore fiber.  相似文献   

12.
The effect of internal wave solitons on the sound field generated by a point source in a shallow sea is considered. In the framework of the theory of “horizontal rays and vertical modes,” the sound field pattern governed by the aforementioned hydrodynamic effect is investigated. It is shown that solitons can induce time-periodic focusing and defocusing of horizontal rays propagating at shallow angles to the internal wave front. This may result in the formation of “dynamical” horizontal sound channels, which, in its turn, results in considerable temporal fluctuations of the field along the acoustic track oriented along the internal wave front. For the sound field calculations, an approach is developed on the basis of the parabolic approximation in the horizontal plane and the mode representation in the vertical direction. The results obtained can be used for remote monitoring of internal wave packets in a shallow sea.  相似文献   

13.
In 1983, sounds at 133 Hz, 0.06 s resolution were transmitted in the Pacific for five days at 2 min intervals over 3709 km between bottom-mounted instruments maintained with atomic clocks. In 1989, a technique was developed to measure changes in acoustic travel time with an accuracy of 135 microseconds at 2 min intervals for selected windows of travel time within the impulse response. The data have short-lived 1 to 10 ms oscillations of travel time with periods less than a few days. Excluding tidal effects, different windows exhibited significant synchronized changes in travel time for periods shorter than 10 h. In the 1980s, this phenomenon was not understood because internal waves have correlation lengths of a few kilometers which are smaller than the way sound was thought to sample the ocean along well-separated and distinct rays corresponding to different windows. The paradox's resolution comes from modern theories that replace the ray-picture with finite wavelength representations that predict sound can be influenced in the upper ocean over horizontal scales such as 20 km or more. Thus, different windows are influenced by the same short-scale fluctuations of sound speed. This conclusion is supported by the data and numerical simulations of the impulse response.  相似文献   

14.
The effect of a short-period internal wave measured in field conditions on the horizontal (side) refraction of sound rays is estimated. The angle of horizontal refraction, i.e., the angle between the direction of the signal arrival in the horizontal plane and the true direction to the sound source, is determined. The influence of various factors, such as the position of the receiving system in depth with respect to the layer of high sound velocity gradients, the rotation of the transmitter-receiver track with respect to the internal wave front, etc., on the horizontal refraction is estimated. Numerical calculations are carried out. Conclusions about the possible errors that arise in determining the azimuth direction to the sound source because of the effect of short-period internal waves are derived.  相似文献   

15.
The didjeridu, or yidaki, is a simple tube about 1.5 m long, played with the lips, as in a tuba, but mostly producing just a tonal, rhythmic drone sound. The acoustic impedance spectra of performers' vocal tracts were measured while they played and compared with the radiated sound spectra. When the tongue is close to the hard palate, the vocal tract impedance has several maxima in the range 1-3 kHz. These maxima, if sufficiently large, produce minima in the spectral envelope of the sound because the corresponding frequency components of acoustic current in the flow entering the instrument are small. In the ranges between the impedance maxima, the lower impedance of the tract allows relatively large acoustic current components that correspond to strong formants in the radiated sound. Broad, weak formants can also be observed when groups of even or odd harmonics coincide with bore resonances. Schlieren photographs of the jet entering the instrument and high speed video images of the player's lips show that the lips are closed for about half of each cycle, thus generating high levels of upper harmonics of the lip frequency. Examples of the spectra of "circular breathing" and combined playing and vocalization are shown.  相似文献   

16.
A method for simulation of acoustical bores, useful in the context of sound synthesis by physical modeling of woodwind instruments, is presented. As with previously developed methods, such as digital waveguide modeling (DWM) [Smith, Comput. Music J. 16, 74-91 (1992)] and the multi convolution algorithm (MCA) [Martinez et al., J. Acoust. Soc. Am. 84, 1620-1627 (1988)], the approach is based on a one-dimensional model of wave propagation in the bore. Both the DWM method and the MCA explicitly compute the transmission and reflection of wave variables that represent actual traveling pressure waves. The method presented in this report, the wave digital modeling (WDM) method, avoids the typical limitations associated with these methods by using a more general definition of the wave variables. An efficient and spatially modular discrete-time model is constructed from the digital representations of elemental bore units such as cylindrical sections, conical sections, and toneholes. Frequency-dependent phenomena, such as boundary losses, are approximated with digital filters. The stability of a simulation of a complete acoustic bore is investigated empirically. Results of the simulation of a full clarinet show that a very good concordance with classic transmission-line theory is obtained.  相似文献   

17.
浅海内波影响下的波导不变量变化特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
宋文华  胡涛  郭圣明  马力 《物理学报》2014,63(19):194303-194303
针对浅海内波引起波导不变量变化的问题,利用声场波导不变量的概率分布并结合声场简正波的理论,研究了内波活动下波导不变量的时变性,给出了波导不变量变化的机理和规律.具体结论是,在负跃层波导中,声场的波导不变量的最大概率取值具有明显的频变特性.内波环境下,当声传播方向与内波波阵面平行时,接收声场简正波的幅度变化不大,但是简正波的相慢度差和群慢度差的变化却能引起波导不变量最大概率取值的变化;而当声传播方向与内波波阵面垂直时,内波引起的简正波耦合同样会导致波导不变量的最大概率取值的明显变化.  相似文献   

18.
This paper focuses on an active noise cancellation system for a home window using a transparent acoustic transducer. In a traditional active noise cancellation system, direct microphone measurements are used for reference and error signals. In the case of the window application, both external and internal sound would be picked up by such microphones. This leads to adverse effects on the performance of the active noise cancellation system and also to distortion of the internal sound. To address this problem, a wave separation technique is proposed to separate the internal and external components of sound. The wave separation algorithm is based on the use of two microphones and an algorithm that separates components based on their direction of travel. An active noise cancellation system is implemented using wave separation for both the error and reference signal measurements. The performance of the resulting ANC system is experimentally tested in a cabin equipped with a window and results are presented. Experimental results show that the new system is able to accurately preserve desired internal sound while cancelling uncorrelated external noise.  相似文献   

19.
In earlier studies, one has successfully developed three different source methods (SSM, similar source method; IPSM, internal parallel source method; ISM, internal source method) to estimate radiation and scattering sound fields. All these methods are estimations of exterior sound fields. In the present study, the similar source method is modified to estimate an interior sound field. The modification is to move the imaginary sources outside the boundary surface. In addition, general boundary conditions in terms of acoustic admittance or impedance are considered by introducing the suitable least square error functions. Finally, a two-dimensional interior sound field with alternative boundary conditions is evaluated to simulate sound fields inside a car. The results are in agreement with those of boundary integral method.  相似文献   

20.
Estimates are presented for the fluctuations of the parameters of low-frequency sound fields in shallow-water regions of the Barents Sea, in the presence of seasonal internal gravity waves. The objective of the experiments is to reveal the main mechanisms that govern the sound fluctuations and their statistical parameters on paths of moderate lengths (50–60 to 100–120 km). Another objective is to determine the features of the sound interaction with internal waves for the sound speed profile of the summer—autumn type for which the water stratification is most pronounced. As the probing signals, continuous tonal ones produced by bottommoored sources at the frequencies about 100 and 300 Hz are used along with the 1/3-octave noise signals with the central frequency 1000 Hz, which are generated by a source deployed from a vessel. For the signal reception, both fixed bottom-moored hydrophones and a vertical chain of hydrophones are used, the chain also being deployed from the vessel. The water temperature, the salinity, and the thermocline displacements are monitored with standard hydrographic sensors. The following main results are presented: the estimate of the degree of correlation between the sound fluctuations and the parameters of the water layer, the comparison of the fluctuations in the signal amplitude envelope with the data obtained in other regions, and the estimate of the statistical parameters of the signal amplitude fluctuations, including their dependence on the path length. One more result consists in the proof of the wave nature of the interaction of sound and internal waves, which manifests itself in a strong dependence of the sound interaction with internal waves of discrete frequencies on the frequency of the probing signal and on the angle at which these wave beams intersect. An attempt is made to explain the observed phenomena by the synchronism in the interacting sound and gravity waves. The data obtained can be used to analyze and compare the fluctuations of the sound fields in the ocean, especially in shallow-water regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号