首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current quantum cryptography systems are limited by the attenuated coherent pulses they use as light sources: a security loophole is opened up by the possibility of multiple-photon pulses. By replacing the source with a single-photon emitter, transmission rates of secure information can be improved. We have investigated the use of single self-assembled InAs/GaAs quantum dots as such single-photon sources, and have seen a tenfold reduction in the multi-photon probability as compared to Poissonian pulses. An extension of our experiment should also allow for the generation of triggered, polarization-entangled photon pairs. The utility of these light sources is currently limited by the low efficiency with which photons are collected. However, by fabricating an optical microcavity containing a single quantum dot, the spontaneous emission rate into a single mode can be enhanced. Using this method, we have seen 78% coupling of single-dot radiation into a single cavity resonance. The enhanced spontaneous decay should also allow for higher photon pulse rates, up to about 3 GHz. Received 8 July 2001 and Received in final form 25 August 2001  相似文献   

2.
The pixel by pixel calibration of a scientific CCD camera allows Poissonian statistics of the spatial fluctuations of an uniform enlightening to be retrieved in the full range of the camera dynamic. The procedure works efficiently for thermal as well as for laser sources, provided that the wavelength and the coherence properties of the source are chosen in order to avoid the formation of equal thickness fringes in the chip (etaloning effect). Calibration allows also the comparison at the shot noise level of images recorded at different places on the chip. Received 9 September 2002 / Received in final form 16 October 2002 Published online 21 January 2003  相似文献   

3.
We examine the problem of efficiently collecting the photons produced by solid-state single photon sources. The extent of the problem is first established with the aid of simple physical concepts. Several approaches to improving the collection efficiency are then examined and are broadly categorized into two types. First are those based on cavity quantum dynamics, in which the pathways by which the source may emit a photon are restricted, thus channeling emission into one desired mode. Second are those where we try to reshape the free space modes into a target mode in an optimal way, by means of refraction, without fundamentally altering the way in which the source emits. Respectively, we examine a variety of microcavities and solid immersion lenses. Whilst we find that the micropillar microcavities offer the highest collection efficiency (∼70%), choosing this approach may not always be appropriate due to other constraints. Details of the different approaches, their merits and drawbacks are discussed in detail. Received 19 July 2001 and Received in final form 5 October 2001  相似文献   

4.
真实量子密钥分发系统中不完善的单光子源和信道损耗的存在,使得现有基于弱相干态的量子密码实验在分束攻击下并不安全,诱骗信号方案能实现基于现有技术绝对安全的量子密钥分发,并能有效提高密钥分发率和安全传输距离,因此成为近年来量子通信研究的热点问题.结合现实量子密码系统的一般模型,介绍目前几种典型的诱骗信号方案以及实验进展,综述了诱骗信号方案的发展情况和最新成果,并对未来的研究方向进行了展望.  相似文献   

5.
We report a new quantum cryptographic system involving single sideband detection and allowing an implementation of the BB84 protocol. The transmitted bits are reliably coded by the phase of a high frequency modulating signal. The principle of operation is described in terms of both classical and quantum optics. The method has been demonstrated experimentally at 1 550 nm using compact and conventional device technology. Single photon interference has been obtained with a fringe visibility greater than 98%, indicating that the system can be used in view of quantum key distribution potentially beyond 50-km-long standard single-mode fiber. Received 13 July 2001 and Received in final form 30 November 2001  相似文献   

6.
We give a proof that entanglement purification, even with noisy apparatus, is sufficient to disentangle an eavesdropper (Eve) from the communication channel. Our proof applies to all possible attacks (individual and coherent). Due to the quantum nature of the entanglement purification protocol, it is also possible to use the obtained quantum channel for secure transmission of quantum information. Received 10 August 2001 and Received in final form 26 October 2001  相似文献   

7.
A new family of two-parameter quantum key distribution protocols is discussed where eavesdropping is detected by using two parameters: bit error rate Q and photon count rate q in control time slots. When a single-photon source is used and mutually orthogonal states are prepared in each basis, the protocol’s maximum tolerable error rate for secure key distribution is the highest, reaching a theoretical upper limit of 50%. When the signal states emitted by the source of attenuated laser light include multiphoton coherent states, the protocol also guarantees secure key distribution over the longest distance as compared to other quantum cryptography systems, up to the channel length for which the channel losses are sufficiently high that all five-photon pulses can be blocked by an eavesdropper.  相似文献   

8.
In an interferometer, path information and interference visibility are incompatible quantities. Complete determination of the path will exclude any possibility of interference, rendering zero visibility. However, it is, under certain conditions, possible to trade the path information for improved (conditioned) visibility. This procedure is called quantum erasure. We have performed such experiments with polarization-entangled photon pairs. Using a partial polarizer, we could vary the degree of entanglement between the object and the probe. We could also vary the interferometer splitting ratio and thereby vary the a priori path predictability. This allowed us to test quantum erasure under a number of different experimental conditions. All experiments were in good agreement with theory. Received 15 July 2001 and Received in final form 30 November 2001  相似文献   

9.
A theoretical quantum communication scheme based on entanglement swapping and superdense coding is proposed with a 3-dimensional Bell state and 2-dimensional Bell state function as quantum channel. quantum key distribution and quantum secure direct communication can be simultaneously accomplished in the scheme. The scheme is secure and has high source capacity. At last, we generalize the quantum communication scheme to d-dimensional quantum channel.  相似文献   

10.
We report on energy-time and time-bin entangled photon-pair sources based on a periodically poled lithium niobate (PPLN) waveguide. Degenerate twin photons at 1 314 nm wavelength are created by spontaneous parametric down-conversion and coupled into standard telecom fibers. Our PPLN waveguide features a very high conversion efficiency of about 10-6, roughly 4 orders of magnitude more than that obtained employing bulk crystals [#!Tanzilli01a!#]. Even if using low power laser diodes, this engenders a significant probability for creating two pairs at a time - an important advantage for some quantum communication protocols. We point out a simple means to characterize the pair creation probability in case of a pulsed pump. To investigate the quality of the entangled states, we perform photon-pair interference experiments, leading to visibilities of 97% for the case of energy-time entanglement and of 84% for the case of time-bin entanglement. Although the last figure must still be improved, these tests demonstrate the high potential of PPLN waveguide based sources to become a key element for future quantum communication schemes. Received 13 July 2001  相似文献   

11.
周媛媛  张合庆  周学军  田培根 《物理学报》2013,62(20):200302-200302
从有效性、稳定性和可行性三个方面, 对基于标记配对相干态光源的诱骗态量子密钥分配的性能进行了全面分析. 采用四组实验数据对基于标记配对相干态光源的三强度诱骗态方案的密钥生成效率、量子比特误码率和最优信号态强度与安全传输距离之间的关系进行了仿真和分析; 考虑到光源涨落, 对方案的稳定性进行了讨论和仿真; 并对基于标记配对相干态光源设计简单易实现方案的可行性进行了分析. 结论表明: 基于标记配对相干态光源的诱骗态方案性能在安全传输距离和密钥生成效率两方面都优于现有基于弱相干态光源和预报单光子源的诱骗态方案; 在光源强度涨落相同条件下, 标记配对相干态光源的稳定性逊于预报单光子源, 而优于相干态光源. 但是标记配对相干态光源在有效性上的优势可弥补其在稳定性上的不足; 且标记配对相干态光源的双模特性为设计简单易实现的被动诱骗态方案提供了条件. 关键词: 量子光学 量子密钥分配 标记配对相干态光源 性能  相似文献   

12.
Exact many-body methods as well as current-spin-density functional theory are used to study the magnetism and electron localization in two-dimensional quantum dots and quasi-one-dimensional quantum rings. Predictions of broken-symmetry solutions within the density functional model are confirmed by exact configuration interaction (CI) calculations: In a quantum ring the electrons localize to form an antiferromagnetic chain which can be described with a simple model Hamiltonian. In a quantum dot the magnetic field localizes the electrons as predicted with the density functional approach. Received 5 December 2000  相似文献   

13.
实际量子密钥分发系统使用的单光子源主要是由弱激光脉冲经衰减得到。它不是理想单光子源而是服从泊松分布的准单光子源。每个非空光脉冲中包含多光子的概率不为零,强大的窃听者可利用此获得一些关于最终密钥的信息。因此,有必要研究实际QKD系统的安全性。采用对多光子进行分束窃听、单光子最佳攻击相结合的方案,用Shannon信息理论分析了基于弱相干光的实际QKD系统的安全性。研究结果表明实际QKD系统对于分束窃听和最佳攻击是安全的,并给出合法通信双方在该攻击方案下所容忍的误码率上限。  相似文献   

14.
Several examples of photon entanglement are studied in the Q representation of quantum optics. In particular, the entangled states produced in parametric downconversion are studied in detail, and we determine the conditions for the violation of Bell's inequality. Our approach shows that photon entanglement is related to the existence of correlations between the quantum fluctuations of the electromagnetic field associated to different modes. Received 10 August 2002 / Received in final form 7 November 2002 Published online 4 February 2003  相似文献   

15.
Atmospheric continuous-variable quantum key distribution (ACVQKD) has been proven to be secure theoretically with the assumption that the signal source is well protected by the sender so that it cannot be compromised. However, this assumption is quite unpractical in realistic quantum communication system. In this work, we investigate a practical situation in which the signal source is no longer protected by the legitimate parts, but is exposed to the untrusted atmospheric channel. We show that the performance of ACVQKD is reduced by removing the assumption, especially when putting the untrusted source at the middle of the channel. To improve the performance of the ACVQKD with the untrusted source, a non-Gaussian operation, called photon subtraction, is subsequently introduced. Numerical analysis shows that the performance of ACVQKD with an untrusted source can be improved by properly adopting the photon subtraction operation. Moreover, a special situation where the untrusted source is located in the middle of the atmospheric channel is also considered. Under direct reconciliation, we find that its performance can be significantly improved when the photon subtraction operation is manipulated by the sender.  相似文献   

16.
We model an isolated quantum computer as a two-dimensional lattice of qubits (spin halves) with fluctuations in individual qubit energies and residual short-range inter-qubit couplings. In the limit when fluctuations and couplings are small compared to the one-qubit energy spacing, the spectrum has a band structure and we study the quantum computer core (central band) with the highest density of states. Above a critical inter-qubit coupling strength, quantum chaos sets in, leading to quantum ergodicity of eigenstates in an isolated quantum computer. The onset of chaos results in the interaction induced dynamical thermalization and the occupation numbers well described by the Fermi-Dirac distribution. This thermalization destroys the noninteracting qubit structure and sets serious requirements for the quantum computer operability. Received 3 July 2001 and Received in final form 9 September 2001  相似文献   

17.
Quantum states of twin photons entangled in angular momentum and polarization provide new degrees of freedom to researchers in quantum information and imaging. This work discuss these states and also emphasizes differences between two proposed models for twin photons entangled in angular momentum. Answers to the presented questions would contribute to a better understanding of this nonlinear process. Received 30 August 2002 / Received in final form 10 October 2002 Published online 21 January 2003  相似文献   

18.
Homodyne detection can be used to perform measurements on various quantum states of the light, such as conditional single photon states produced by parametric fluorescence processes. In the pulsed regime, the time and frequency overlap between the single photon wave packet and the local oscillator field plays a crucial role. We show in this paper that this overlap can be characterized by an effective quantum efficiency, which is explicitly calculated in various situations of experimental interest. Received 27 July 2000 and Received in final form 29 November 2000  相似文献   

19.
We examine a generic three level mechanism of quantum computation in which all fundamental single and double qubit quantum logic gates are operating under the effect of adiabatically controllable static (radiation free) bias couplings between the states. Under the time evolution imposed by these bias couplings the quantum state cycles between the two degenerate levels in the ground state and the quantum gates are realized by changing Hamiltonian at certain time intervals when the system collapses to a two state subspace. We propose a physical implementation of the mechanism using Aharonov-Bohm persistent-current loops in crossed electric and magnetic fields, with the output of the loop read out by using a quantum Hall effect aided mechanism. Received 26 March 2002 / Received in final form 8 July 2002 Published online 19 November 2002  相似文献   

20.
We analyse the coherence properties of two particles trapped in a one-dimensional harmonic potential. This simple model allows us to derive analytic expressions for the first and second order coherence functions. We investigate their properties depending on the particle nature and the temperature of the quantum gas. We find that at zero temperature non-interacting bosons and fermions show very different correlations, while they coincide for higher temperatures. We observe atom bunching for bosons and atom anti-bunching for fermions. When the effect of s-wave scattering between bosons is taken into account, we find that the range of coherence is enhanced or reduced for repulsive or attractive potentials, respectively. Strongly repelling bosons become in some way more “fermion-like" and show anti-bunching. Their first order coherence function, however, differs from that for fermions. Received 19 September 2002 Published online 4 February 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号