首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The chemisorption of CO on the Pt atoms of an initially (1 × 3) reconstructed Pt0.98Cu0.02(110) surface at ~ 373 K can lead to the formation of a (1 × 1) surface. Comparisons are made with (1 × 3)-CO surfaces formed by CO exposures at 293 or 155 K. Thermal desorption shows that the (1 × 1)-CO surface has an enhanced population of high temperature CO peak ( ~ 543 K) from Pt sites. The CO-induced structural conversion also leads to a decrease in the subsequent CO uptake on the low temperature Pt sites and on the Pt-Cu “mixed” sites, with a concomitant increase in adsorption on the Cu-like sites. Such a reduction in the number of the Pt-Cu “ mixed” sites is also reflected in the CO-induced changes of the Cu 3d-derived states and the Cu 2p32 core levels. A dynamic interplay between chemisorption and surface structure is thus demonstrated.  相似文献   

2.
Thermal desorption and photoemission spectroscopy (PES) have been used to investigate the chemisorption of CO on an annealed Pt0.98Cu0.02(110) surface. The clean surface shows 9.1 ± 2.6% Cu within the top 4 Å, and is (1 × 3) reconstructed. Thermal desorption of CO has revealed the existence of various adsorption states with these respective heats of adsorption: (α) 35.2 to 37.8 kcal/mol and (β) 24.5 to 26.3 kcal/mol on Pt sites, (γ) 16.0 to 17.2 kcal/mol on PtCu “mixed” sited, and (δ) 12.9 to 13.9 kcal/mol on Cu sites. PES observation of Cu 3d-derived states (using hv = 150 eV) and the Cu 2p32 core levels (using Mg Kα radiation) shows that the electronic structure of the Cu constituent is changed only when CO adsorbs on the Pt-Cu “mixed” sites or the Cu sites. Furthermore, the CO states associated with Pt sites reflect the structural difference between the (1 × 3) alloy surface and the (1 × 2) pure Pt(110) surface: α-CO on the alloy surface desorbs at a temperature 17 to 21 K. higher than the maximum desorption temperature of CO from pure Pt(110), and the ratio of β-CO to α-CO desorption from the alloy surface is larger than the ratio of low temperature to high temperature peaks in the desorption of CO from pure Pt(110).  相似文献   

3.
Photoemission and Auger electron spectroscopy on Pt0.98Cu0.02 show that the (110) face has over twice as much Cu surface segregation as the (111) face. The Cu 3d-derived surface “density of states” differ strikingly in peak shape and in width (by 0.5 eV). The centroids, compared with bulk Cu d states, are shifted by more than 0.3 eV towards the Fermi level. This is the first experimental correlation between surface segregation and surface bonding.  相似文献   

4.
Thermal desorption spectroscopy (TDS) has been used to study the chemisorption of CO, O2, and h2 on Pt. It has been found that TDS is quite sensitive to local surface structure. Three single crystal and two polycrystalline Pt surfaces were studied. One single crystal was cut to expose the smooth, hexagonally close-packed plane of the fee Pt crystal (the (111) surface). The other two single crystals were cut to expose stepped surfaces consisting of smooth, hexagonally close-packed terraces six atoms wide separated by one atom high steps (the 6(111) × (100) and 6(111) × (111) surfaces). Only one predominant desorption state was observed for CO and H adsorbed on the smooth (111) single crystal surface, while two predominant desorption states were observed for these gases adsorbed on the stepped single crystal surfaces. The low temperature desorption states on the stepped surfaces are attributed to desorption from the terraces, while the high temperature desorption states are attributed to desorption from the steps. TDS of CO from the polycrystalline foils exhibited some desorption states which were similar to those observed on the stepped single crystal surfaces, indicating the presence of adsorption sites on the polycrystalline foils that were similar to the terrace and step sites on the stepped single crystals. In general, these results suggest a high density of defect sites on the polycrystalline foils which can not be attributed simply to adsorption at grain boundaries. Oxygen was found to adsorb well on the stepped single crystals and on the polycrystalline foils, but not on the smooth (111) single crystal, under the conditions of these experiments. This is attributed to a higher sticking probability for dissociative O2 adsorption at steps or defects than on terraces.  相似文献   

5.
The growth modes and interaction of vapor-deposited Cu on a clean Pt(111) surface have been monitored by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and work function measurements. The LEED data indicate that below 475 K Cu grows in p(1 × 1) islands in the first monolayer with the interatomic Cu spacing the same as the Pt(111) substrate. The second monolayer of Cu grows in epitaxial, rotationally commensurate Cu(111) planes with the CuCu distance the same as bulk Cu. For substrate temperatures below ~ 475 K, the variation of work function and “cross-over beam voltage” with Cu coverage show characteristic features at one monolayer that are quite useful for calibration of θCu. Above 525 K, Cu-Pt alloy formation was observed in AES and LEED data. Thermal desorption spectroscopy of H2 and CO has demonstrated that simple site blocking of the Pt(111) surface by vapor-deposited Cu occurs linearly with chemisorption being essentially eliminated at θCu = 1.0–1.15. Conclusions drawn from this work correlate very favorably with the well-known effects of under potentially deposited copper on the electrochemistry of the H22H+ couple at platinum electrodes.  相似文献   

6.
CO adsorption on clean and oxidized Pt3Ti(111) surfaces has been investigated by means of Auger Electron Spectroscopy (AES), Thermal Desorption Spectroscopy (TDS), Low Energy Electron Diffraction (LEED) and High Resolution Electron Energy Loss Spectroscopy (HREELS). On clean Pt3Ti(111) the LEED patterns after CO adsorption exhibit either a diffuse or a sharp c(4 × 2) structure (stable up to 300 K) depending on the adsorption temperature. Remarkably, the adsorption/desorption behavior of CO on clean Pt3Ti(111) is similar to that on Pt(111) except that partial CO decomposition on Ti sites and partial CO oxidation have also been evidenced. Therefore, the clean surface cannot be terminated by a pure Pt plane. Partially oxidized Pt3Ti(111) surfaces (< 135 L O2 exposure at 1000 K) exhibit a CO adsorption/desorption behavior rather similar to that of the clean surface, showing again a c(4 × 2) structure (stable up to 250 K). Only the oxidation of CO is not detectable any more. These results indicate that some areas of the substrate remain non-oxidized upon low oxygen exposures. Heavily oxidized Pt3Ti(111) surfaces (> 220 L O2 exposure at 1000 K) allow no CO adsorption indicating that the titanium oxide film prepared under these conditions is completely closed.  相似文献   

7.
The interaction of methanol with clean and oxygen-covered Pt(111) surfaces has been examined with high resolution electron loss spectroscopy (EELS) and thermal desorption spectroscopy (TDS). On the clean Pt(111) surface, methanol dehydrogenated above 140 K to form adsorbed carbon monoxide and hydrogen. On a Pt(111)-p(2 × 2)O surface, methanol formed a methoxy species (CH3O) and adsorbed water. The methoxy species was unstable above 170 K and decomposed to form adsorbed CO and hydrogen. Above room temperature, hydrogen and carbon monoxide desorbed near 360 and 470 K, respectively. The instability of methanol and methoxy groups on the Pt surface is in agreement with the dehydrogenation reaction observed on W, Ru, Pd and Ni surfaces at low pressures. This is in contrast with the higher stability of methoxy groups on silver and copper surfaces, where decomposition to formaldehyde and hydrogen occurs. The hypothesis is proposed that metals with low heats of adsorption of CO and H2 (Ag, Cu) may selectively form formaldehyde via the methoxy intermediate, whereas other metals with high CO and H2 chemisorption heats rapidly dehydrogenate methoxy species below room temperature.  相似文献   

8.
Mine A. Gülmen 《Surface science》2006,600(21):4909-4921
The adsorption properties of CO on Pt3Sn were investigated by utilizing quantum mechanical calculations. The (1 1 1), (1 1 0) and (0 0 1) surfaces of Pt3Sn were generated with all possible bulk terminations, and on these terminations all types of active sites were determined. The adsorption energies and the geometries of the CO molecule at those sites were found. Those results were compared with the results obtained from the adsorption of CO on similar sites of Pt(1 1 1), Pt(1 1 0) and Pt(0 0 1) surfaces. The comparison reveals that adsorption of CO is stronger on Pt surfaces; this may be the reason why catalysts with Pt3Sn phase do not suffer from CO posioning in experimental works. Aiming to understand the interactions between CO and the metal adsorption sites in detail, the local density of states (LDOS) profiles were produced for atop-Pt adsorption, both for the carbon end of CO for its adsorbed and free states, and for the Pt atom of the binding site. LDOS profiles of C of free and adsorbed CO and Pt for corresponding pure Pt surfaces, Pt(1 1 1), Pt(1 1 0) and Pt(0 0 1) were also obtained. The comparison of the LDOS profiles of Pt atoms of atop adsorption sites on the same faces of bare Pt3Sn and Pt surfaces showed the effect of alloying with Sn on the electronic properties of Pt atoms. Comparison of LDOS profiles of the C end of CO in its free and atop adsorbed states on Pt3Sn and LDOS of Pt on bare and CO adsorbed Pt3Sn surface were used to clear out the electronic changes occurred on CO and Pt upon adsorption. The study showed that (i) inclusion of a Sn atom at the adsorption site structure causes dramatic decrease in stability which limits the number of possible CO adsorption sites on Pt3Sn surface, (ii) the presence of Sn causes angles different from 180° for M-C-O orientation, (iii) the presence of Sn in the neighborhood of Pt on which CO is adsorbed causes superposition of the 5σ/1π derived-state peaks at the carbon end of CO and changes in adsorption energy of CO, (iv) Sn present beneath the adsorption site strengthens the CO adsorption, whereas neighboring Sn on the surface weakens it for all Pt3Sn surfaces tested and (v) the most stable site for CO adsorption is the atop-Pt site of the mixed atom termination of Pt3Sn(1 1 0).  相似文献   

9.
《Current Applied Physics》2015,15(11):1303-1311
Spin-polarized density functional theory calculations were performed to investigate the magnetism of bulk and Cu2O surfaces. It is found that bulk Cu2O, Cu/O-terminated Cu2O(111) and (110) surfaces have no magnetic moment, while, the O-terminated Cu2O(100) and polar O-terminated Cu2O(111) surfaces have magnetism. For low index surfaces with cation and anion vacancy, we only found that the Cu vacancy on the Cu2O(110) Cu/O-terminated surface can induce magnetism. For atomic and molecular oxygen adsorption on the low index surfaces, we found that atomic and molecular oxygen adsorption on the Cu-terminated Cu2O(110) surface is much stronger than on the Cu/O-terminated Cu2O(111) and Cu-terminated Cu2O(100) surfaces. More interesting, O and O2 adsorption on the surface of Cu/O terminated Cu2O(111) and O2 adsorption on the Cu-terminated Cu2O(110) surface can induce weak ferromagnetism. In addition, we analysis origin of Cu2O surfaces with magnetism from density of state, the surface ferromagnetism possibly due to the increased 2p–3d hybridization of surface Cu and O atoms. This is radically different from other systems previously known to exhibit point defect ferromagnetism, warranting a closer look at the phenomenon.  相似文献   

10.
The temperature-programmed reaction (TPR) method, high-resolution electron energy loss spectroscopy (HREELS), and molecular beam method were used to elucidate the role surface reconstruction, subsurface oxygen (Osubs), and COads concentration play in the low-temperature oxidation of CO on the Pt(100), Pt(410), Pd(111), and Pd(110) surfaces. The possibility of the formation of so-called hot oxygen atoms, which arise at the surface at the instant of dissociation of O2ads molecules and can react with COads at low temperatures (~150 K) to form CO2, was examined. It was revealed that, when present in high concentration, COads initiates the phase transition of the Pt(100)-(hex) reconstructed surface into the (1 × 1) non-reconstructed one and blocks fourfold hollow sites of oxygen adsorption (Pt4-Oads), thereby initiating the formation of weakly bound oxygen (Pt2-Oads), active in CO oxidation. For the Pt(410), Pd(111), and Pd(110) surfaces, the reactivity of Oads with respect to CO was demonstrated to be dependent on the surface coverage of COads. The 18Oads isotope label was used to determine the nature of active oxygen reacting with CO at ~150–200 K. It was examined why a COads layer produces a strong effect on the reactivity of atomic oxygen. The experimental results were confirmed by theoretical calculations based on the minimization of the Gibbs energy of the adsorption layer. According to these calculations, the COads layer causes a decrease in the apparent activation energy E act of the reaction due to changes in the type of coordination and in the energy of binding of Oads atoms to the surface.  相似文献   

11.
Ultraviolet photoelectron spectroscopy (UPS) has been used to study the chemisorption of CO, O2, and H2 on platinum. Three single crystal surfaces ((111), 6(111) × (100), and 6(111) × (111)) and two polycrystalline surfaces were studied. These studies yielded three important results. First, the most dominant change in the Pt valence band upon gas adsorption was a decrease in the height of the peak immediately below the Fermi level. This decrease was nearly identical for all three gases studied. Second, CO adsorption resulted in the formation of a resonance state ~8 eV below the Fermi level which was attributed to CO molecular orbitals. In contrast, no dominant resonance states were observed for adsorbed O or H. The lack of an O resonance state on platinum is in contrast to the results observed for O adsorbed on Fe and Ni and suggests important differences between the OPt chemisorption bond and the OFe and ONi chemisorption bonds. Finally, adsorption of CO at steps or defects led to a decrease in work function while its adsorption on terraces led to an increase in work function. For H, adsorption at steps led to an increase in work function while adsorption on terraces led to a decrease in work function. The adsorption of O led to an increase in work function on all of the surfaces studied.  相似文献   

12.
The thermal and electro impact behaviour of NO adsorbed on Pt(111) and Pt(110) have been studied by LEED, Auger spectroscopy, and thermal desorption. NO was found to adsorb non-dissociatively and with very similar low coverage adsorption enthalpies on the two surfaces at 300 K. In both cases, heating the adlayer resulted in partial dissociation and led to the appearance of N2 and O2 in the desorption spectra. The (111) surface was found to be significantly more active in inducing the thermal dissociation of NO, and on this surface the molecule was also rapidly desorbed and dissociated under electron impact. Cross sections for these processes were obtained, together with the desorption cross section for atomically bound N formed by dissociation of adsorbed NO. Electron impact effects were found to be much less important on the (110) surface. The results are considered in relation to those already obtained by Ertl et al. for NO adsorption on Ni(111) and Pd(111), and in particular, the unusual desorption kinetics of N2 production are considered explicitly. Where appropriate, comparisons are made with the behaviour of CO on Pt(111) and Pt(110), and the adsorption kinetics of NO on the (110) surface have been examined.  相似文献   

13.
Epitaxial layers of copper were formed on Pt(111) and Pt(553) single crystal surfaces by condensation of copper atoms from the vapor. Surface alloys were formed by diffusing the copper atoms into the platinum substrate at temperatures above 550 K. The activation energy for this process was found to be ~ 120 kJmol. These Pt/Cu surfaces were characterized by LEED, AES, and TDS of CO. The copper grows in islands on the Pt(111) surface and one monolayer is completed before another begins. There is an apparent repulsive interaction between the copper atoms and the step sites of the Pt(553) surface which causes a second layer of copper to begin forming before the first layer is complete. Epitaxial copper atoms block CO adsorption sites on the platinum surface without affecting the CO desorption energy. When the copper is alloyed with the platinum however, the energy of desorption of CO from the platinum was reduced by as much as 20 kJmol. This reduction in the desorption energy suggests an electronic modification that weakens the Pt-CO bond.  相似文献   

14.
Adsorption of CHCl3, O2, and hydrocarbons has been studied on Cu(111) and stepped surfaces using LEED, AES, and UPS at room temperature. We find that ordered Cl overlayers form upon Cu(111), Cu[3(111) × (100)], and Cu[5(111) × (100)] surfaces upon exposure to CHCl3. Exposure to O2 results in rearrangement of the Cu[5(111) × (100)] surface to hill-and-valley regions with large (111) areas, whereas Cu[2(111) × (100)] is stable for the same exposure. The photoemission spectra show new energy levels due to C1 above and below the Cu d band region and a small splitting of the halogen p orbitals. Effects consistent with interaction with the Cu d band are observed. Similar effects are observed with oxygen adsorption. The initial rate of Cl or O2 chemisorption as measured by photoemission is proportional to the density of steps on these surfaces. Apparently, structural effects play an important role in chemisorption on metals (such as copper) with low density of states at the Fermi energy.  相似文献   

15.
Nuclear microanalysis (NMA) has been used to determine the absolute coverages of oxygen and CO adsorbed on Pt(111). The saturation oxygen coverage at 300 K is 3.9 ± 0.4 × 1014 O atoms cm?2 (θ = 0.26 ± 0.03), confirming the assignment of the LEED pattern as p(2 × 2). The saturation CO coverage at 300 K is 7.4 ± 0.3 × 1014 CO cm?2 (θ = 0.49 ± 0.02). The low temperature saturation CO coverages on Pt(100), (110) and (111) surfaces are compared.  相似文献   

16.
The interaction of CO, O2, H2, N2, C2H4 and C6H6 with an Ir(110) surface has been studied using LEED, Auger electron spectroscopy and flash desorption mass spectroscopy. Adsorption of oxygen at 30°C produces a (1× 2) structure, while a c(2 × 2) structure is formed at 400°C. Two peaks have been detected in the thermal desorption spectrum of oxygen following adsorption at 30°C. The heat of adsorption of hydrogen is slightly higher on Ir(110) than on Ir(111). Adsorption of carbon monoxide at 30°C produces a (2 × 1) surface structure. The main CO desorption peak is found around 230, while two other desorption peaks are observed around 340 and 160°C. At exposures between 250 and 500°C carbon monoxide adsorption yields a c(2 × 2) structure and a desorption peak around 600°C. Carbon monoxide is adsorbed on an Ir(110) surface partly covered with oxygen or carbon in a new binding state with a significantly higher desorption temperature than on the clean surface. Adsorption of nitrogen could not be detected on either clean or on carbon covered Ir(110) surfaces. The hydrocarbon molecules do not form ordered surface structures on Ir(110). The thermal desorption spectra obtained after adsorption of C6H6 or C2H4 are similar to those reported previously for Ir(111) consisting mostly of hydrogen. Heating the (110) surface above 700°C in the presence of C6H6 or C2H4 results in the formation of an ordered carbonaceous overlayer with (1 × 1) structure. The results are compared with those obtained previously on the Ir(111) and Ir(755) or stepped [6(111) × (100)] surfaces. The CO adsorption results are discussed in relation to data on similar surfaces of other Group VIII metals.  相似文献   

17.
We have used density functional theory method to calculate the Pt surface segregation energy in the Pt3Ni (111) surface doped with a third transition metal M and thus investigated the influence of component M on the extent of Pt segregation to the outermost layer of these Pt3Ni/M (111) surface. As a third component in the Pt3Ni/M (111) surface, V, Fe, Co, Mo, Tc, Ru, W, Re, Os, and Ir were predicted to lead to even more negative Pt surface segregation energies than that in the based Pt3Ni (111) surface; Ti, Cr, Mn, Cu, Zr, Nb, Rh, Hf, and Ta would still retain the preference of Pt segregation to the surface but with less extent than the replaced Ni, while Pd, Ag, and Au would completely suppress the Pt segregation to the Pt3Ni/M (111) surfaces. Furthermore, we examined the relation between the Pt surface segregation energy in the Pt3Ni/M (111) surfaces and the material properties (lattice parameter, heat of solution, and Pt surface segregation energy) of binary alloys Pt3M. It was found that the surface energy effect, strain effect, and heat of solution effect induced by the doped element M would collectively affect the Pt surface segregation energy in the Pt3Ni/M (111) surfaces.  相似文献   

18.
CO adsorption on the (111) face of a Pt10Ni90 alloy single crystal has been investigated at room temperature by vibrational electron energy loss spectroscopy (EELS) and photoelectron spectroscopy (XPS and UPS). Two well separated CO stretching modes develop at 2070 and 1820 ± 10 cm?1, with their intensities reaching 64 and 36% respectively of the total intensity at saturation coverage. They are attributed to CO adspecies in terminal and bridge bonded configuration respectively. The UPS spectra of 4σ, 5σ and 1π molecular orbitais of adsorbed CO show complex features which may be resolved into two components having the main characteristics of CO adsorbed on pure Pt(111) and Ni(111) respectively. Such behaviour is also observed by XPS on C 1s on O 1s peaks. Their respective contributions, in both XPS and UPS spectra are about 64 and 36% of the whole spectrum. Finally compared to Ni(111) — on which CO adsorbs mainly in bridge configuration — the alloying with 10% Pt has generated the appearance of a large number of new sites for CO chemisorption associated with the presence of Pt atoms at the surface. The large amount of terminal CO adspecies is interpreted in terms of considerable surface enrichment of the alloy in platinum.  相似文献   

19.
H. Rauscher  R.J. Behm 《Surface science》2007,601(19):4608-4619
The interaction of CO with structurally well-defined PtxRuy surface alloys supported on Ru(0 0 0 1) was investigated by thermal desorption spectroscopy and infrared reflection-absorption spectroscopy. The surface composition and the distribution of the surface atoms were controlled by high resolution scanning tunneling microscopy. On these surfaces, which have a nearly random distribution of the two surface species, the adsorption (and desorption) of CO is strongly modified compared to the pure elemental surfaces, by strain effects and electronic ligand effects. CO adsorbs exclusively in a linear configuration on Pt and Ru atoms for all surfaces investigated. The adsorption energy of CO is lowered on the alloy surfaces with respect to both Pt(1 1 1) and Ru(0 0 0 1), similar as for pseudomorphic monolayer Pt films. For both Pt and Ru sites the adsorption strength decreases with increasing Pt concentration.  相似文献   

20.
The adsorption, desorption, surface structural chemistry, and electron impact properties of CO on Rh(110) have been studied by LEED, Auger spectroscopy, thermal desorption, and surface potential measurements. At 300 K, CO adsorbs into a single chemisorbed state whose desorption energy (Ed) is ~130kJmol-1. The initial sticking probability is unity, and at saturation coverage a (2 × 1)plgl ordered phase reaches its maximum degree of perfection, thus demonstrating that this CO structure is common to the (110) faces of all the cubic platinum group metals. The saturated adlayer corresponds to θ = 1 and shows a surface potential of Δ? = +0.97 V. Under electron impact, desorption and dissociation of CO occur with about equal probability, the relevant cross sections being ~10-22 m2 in each case. Slow thermal dissociation of CO occurs at high temperature and pressure, leaving a deposit of C and O atoms on the surface. The thermal, electron impact, and Δ? properties of Rh(110)CO resemble those of Ni(110)CO rather closely, and are very different from those of Pt(110)CO. Surface carbon is shown to inhibit CO chemisorption, whereas surface oxygen appears to lead to the formation of a new more tightly bound form of CO with a considerably enhanced desorption energy (Ed ~ 183 kJmol-1). Similar oxygen-induced high temperature CO states have been reported recently on Co(0001) and Ru(101&#x0304;1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号