首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
In this paper, ultrafast time-resolved coherent degenerate four-wave-mixing (DFWM) spectroscopy is performed to investigate molecular dynamics in the gaseous phase. Laser pulses lasting for 40 fs are used to create and monitor different vibrational eigenstates of iodine at room temperature (corresponding to a low saturation pressure of about 35 Pa). Using an internal time delay in the DFWM process resonant with the transition between the ground X-state and the excited B-state, the vibrational states of both the electronically excited and the ground states are detected as oscillations in the DFWM transient signal. The dynamics of either the electronically excited or ground state of iodine molecules obtained are consistent with the previous high temperature studies on the femtosecond time-resolved DWFM spectroscopy.  相似文献   

2.
Electron energy distribution functions in rf molecular plasmas have been calculated by solving the time dependent Boltzmann equation in the presence as well as the absence of vibrationally and electronically excited molecules and thus of first kind and second kind (superelastic) collisions with them. The results, which refer to a model plasma composed by three components (the ground state, a lumped vibrational state and a lumped electronic state), show that these collisions with vibrationally and electronically excited molecules strongly affect the modulation of the electron energy distribution function and related quantities.  相似文献   

3.
Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result from this broad spectroscopy. However, it can be demonstrated that by the electronic resonance enhancement optimization control a selective excitation of specific vibrational mode is possible. Using an electronically resonance-enhanced effect, iodine molecule specific CARS spectroscopy can be obtained from a mixture of iodine-air at room temperature and a pressure of 1 atm (corresponding to a saturation iodine vapour as low as about 35 Pa). The dynamics on either the electronically excited state or the ground state of iodine molecules obtained is consistent with previous studies (vacuum, heated and pure iodine) in the femtosecond time resolved CARS spectroscopy, showing that an effective method of suppressing the non-resonant CARS background and other interferences is demonstrated.  相似文献   

4.
The formation of diatomic molecules with rotational and vibrational coherence is demonstrated experimentally in free-to-bound two-photon femtosecond photoassociation of hot atoms. In a thermal gas at a temperature of 1000 K, pairs of magnesium atoms, colliding in their electronic ground state, are excited into coherent superpositions of bound rovibrational levels in an electronically excited state. The rovibrational coherence is probed by a time-delayed third photon, resulting in quantum beats in the UV fluorescence. A comprehensive theoretical model based on ab initio calculations rationalizes the generation of coherence by Franck-Condon filtering of collision energies and partial waves, quantifying it in terms of an increase in quantum purity of the thermal ensemble. Our results open the way to coherent control of a binary reaction.  相似文献   

5.
We predict that it is possible to cool rotational, vibrational, and translational degrees of freedom of molecules by coupling a molecular dipole transition to an optical cavity. The dynamics is numerically simulated for a realistic set of experimental parameters using OH molecules. The results show that the translational motion is cooled to a few muK and the internal state is prepared in one of the two ground states of the two decoupled rotational ladders in a few seconds. Shorter cooling times are expected for molecules with larger polarizability.  相似文献   

6.
Ultracold collisions between Cs atoms and Cs2 dimers in the electronic ground state are observed in an optically trapped gas of atoms and molecules. The Cs2 molecules are formed in the triplet ground state by cw photoassociation through the outer well of the 0-(g) (P3/2) excited electronic state. Inelastic atom-molecule collisions converting internal excitation into kinetic energy lead to a loss of Cs2 molecules from the dipole trap. Rate coefficients are determined for collisions involving Cs atoms in either the F=3 or F=4 hyperfine ground state, and Cs2 molecules in either highly vibrationally excited states (nu'=32-47) or in low vibrational states (nu'=4-6) of the a3 summation(u)+ triplet ground state. The rate coefficients beta approximately 10(-10) cm3/s are found to be largely independent of the vibrational and rotational excitation indicating unitary limited cross sections.  相似文献   

7.
刘芳  王军  赵娟  许燕  孟庆田 《物理学报》2011,60(4):40202-040202
采用李代数方法研究双原子分子在红外场中的振动跃迁,给出了体系跃迁概率的解析表达,并讨论了红外场的频率、光强和脉冲持续时间分别对NaCl和LiH分子振动基态和第一振动激发态上粒子数布居的影响. 关键词: 李代数方法 红外场 振动布居 双原子分子  相似文献   

8.
本文提出一个方案以制备一个被囚禁在谐势阱中的离子质心运动的压缩数态。在本方案中,这个离子受到两个分别调到第一高、低振动边带的激光场和一个与离子共振的激光场的轮流激发。系统最后被制备到运动压缩数态与电子基态的直积。  相似文献   

9.
The rotational and vibrational level population distributions of ground and electronically excited states of several homonuclear and heteronuclear molecules are calculated for direct ejection, association, and associative ionization mechanisms of molecule sputtering. The cascade properties, formation mechanism, initial atom separation, and axis orientation to the surface are clearly reflected in the sputtered molecule distributions. In general, extensive non-Boltzmann rotational and vibrational distributions are predicted. The probability that an atom pair survives the ejection, for typical sputtering parameters, is high; approximately 50% for homonuclear molecules to near 100% for hydrides. The predictions are compared with experimental optical emission spectra in the accompanying paper.  相似文献   

10.
张为  谢廷  黄寅  王高仁  丛书林 《中国物理 B》2013,22(1):13301-013301
We demonstrate theoretically that photoassociated molecules can be stabilized to deeply bound states. This process is achieved by transferring the population from the outer well to the inner well using the optimal control theory, the Cs 2 molecule is taken as an example. Numerical calculations show that weakly bound molecules formed in the outer well by a pump pulse can be compressed to the inner well via a vibrational level of the ground electronic state as an intermediary by an additionally optimized laser pulse. The positively chirped pulse can enhance the population of the target state. With a transform-limited dump pulse, nearly all the photoassociated molecules in the inner well of the excited electronic state can be transferred to the deeply vibrational level of the ground electronic state.  相似文献   

11.
We have calculated vibronic spectra of the first electronic nπ* transitions of pyridine and pyrimidine in the isolated state using the DFT method in the Franck-Condon approximation. Vibrational spectra for the ground and excited states have been calculated in the anharmonic approximation, which allowed us to refine the assignment of normal vibrations of pyridine and pyrimidine. We have done a complete interpretation of the vibrational structure of the absorption and fluorescence spectra of pyridine and pyrimidine. It has been shown that Fermi resonances between fundamental and combination vibrations and overtones 12 and 16b + 4, 6a and 2 × 16b affect the formation of the vibrational structure of electronic spectra of pyrimidine. Good agreement between calculated and experimental spectra confirms the correctness of the models of the two molecules in their ground and excited states, which makes it possible to use the models in further investigations of various properties of these molecules in electronically excited states, e.g., tautomerism of pyrimidine bases of nucleic acids.  相似文献   

12.
The translational temperature in the plasma of glow and contracted discharges is measured using the methods of coherent anti-Stokes Raman spectroscopy and optical interferometry. The current density in the discharge is determined by measuring the electron concentration with optical interferometry and emission spectroscopy. The distribution of nitrogen molecules over vibrational and rotational levels in the ground state, the electron energy distribution, and the time dependence of the gas temperature are numerically found based on a model including the homogeneous Boltzmann equation and balance equations for the concentrations of charged and excited particles and for the gas temperature. The dynamics of transition to the quasi-steady-state distribution of nitrogen molecules over vibrational levels is studied.  相似文献   

13.
The rotational spectra of NiF in the electronic ground (2)Pi state and the lowest electronically excited (2)Sigma state have been observed. The source of nickel atom was sputtering from a nickel electrode or nickel powder placed on a stainless steel electrode. The molecular constants have been determined by a least-squares analysis of the observed transition frequencies. The rapid increase in the Lambda-type splittings in the ground state reveals that the observed rotational transitions are ascribed to the spin substate (2)Pi(3/2). The rotational transitions corresponding to the other substate,(2)Pi(1/2), have not been observed. The large spin-rotation interaction constant gamma in the electronically excited (2)Sigma state is consistent with that from the electronic spectroscopy. Copyright 2001 Academic Press.  相似文献   

14.
This paper reviews results on wave packet dynamics investigated by means of femtosecond time-resolved four-wave-mixing (FWM) spectroscopy. First, it is shown that by making use of the various degrees of freedom which are offered by this technique information about molecular dynamics on different potential-energy surfaces can be accessed and separated from each other. By varying the timing, polarization, and wavelengths of the laser pulses as well as the wavelength of the detection window for the FWM signal, different dynamics are coherently excited and probed by the nonlinear spectroscopy. As a model system we use iodine in the gas phase. These techniques are then applied to more-complex molecules (gas phase: benzene, toluene, a binary mixture of benzene and toluene; solid state: polymers of diacetylene matrix-isolated in single crystals of monomer molecules). Here, ground-state dynamics are investigated first without any involvement of electronically excited states and then in electronic resonance to an absorption transition in the investigated molecules. Signal modulations result which are due to wave packet motion as well as polarization beats between modes in different molecules. Phase and intensity changes yield information about intramolecular vibrational energy redistribution, population decay (T1), phase relaxation (T2), and coherence times. Received: 12 October 1999 / Published online: 13 July 2000  相似文献   

15.
Numerical simulation of the effect of intramolecular electrostatic interactions on redistribution of relative intensities in the vibrational structure of (1 ~ 2)1Π–X1Σ+ rotationally resolved transitions of the KRb molecule is performed within the precision nonadiabatic model of coupled vibrational channels. It is established that mutual perturbation of electronically excited states modifies in a nontrivial way a nodal structure of nonadiabatic wavefunction of the (1 ~ 2)1Π complex, which is possible to use for rising efficiency of twostep laser synthesis and stabilization of ultracold ensembles of KRb molecules in the ground electronic state.  相似文献   

16.
Within the Franck–Condon approximation, the single ionisation of H2 leaves H+2 in a coherent superposition of 19 nuclear vibrational states. We numerically design an optimal laser pulse train to transfer such a coherent nuclear wave packet to the ground vibrational state of H+2. Frequency analysis of the designed optimal pulse reveals that the transfer principle is mainly an anti-Stokes transition, i.e. the H+2 in 1sσg with excited nuclear vibrational states is first pumped to 2pσg state by the pulse at an appropriate time, and then dumped back to 1sσg with lower excited or ground vibrational states. The simulation results show that the population of the ground state after the transfer is more than 91%. To the best of our knowledge, this is the highest transition probability when the driving laser field is dozens of femtoseconds.  相似文献   

17.
It is well known that the electron impact cross sections for elastic and inelastic processes for the vibrationally and electronically excited molecules are predominantly different than those for molecules in the ground state. Collisions of low energy electrons with excited molecules play an important role in explaining the behavior of gas discharges in laser and plasma physics, in planetary atmospheres, stars, and interstellar medium and in plasmas widely used in the fabrication of microelectronics. This explains as to why there is a need for having validated sets of electron impact cross sections for different processes. This work reviews the subject of electron collisions with vibrationally and electronically excited molecules in a comprehensive way. The survey has been carried out for a few excited molecules such as H2, D2, T2, HD, HT, DT, N2, O2, and CO2.  相似文献   

18.
A general formula is obtained for the probability of tunneling ionization of an atom accompanied by excitation of the core. This formula is a generalization of the Carlson formula for the probability of a single-photon two-electron transition in atoms. The limiting case of this formula, just as that of the Carlson formula, is the well-known random-perturbations approximation. Numerical results are presented for Zn, Sr, and Cd atoms. For these atoms the contribution of the excited states of singly charged ions to the probability of the formation of doubly charged ions is a nonmonotonic function of the laser radiation intensity. Analysis of the tunneling ionization of molecules shows that with overwhelming probability an ion is formed in the ground vibrational state, while for the standard photoionization the distribution over vibrational states is determined by the Franck-Condon factors.  相似文献   

19.
激光烧蚀Al热原子与CF4,CCl4,CH2Br2反应中激发态C2的形成   总被引:1,自引:1,他引:0  
脉冲激光烧蚀平面铝靶产生的热原子与气相CF4,CCl4,CH2Br2的碰撞反应中,在430~600nm之间观测到激发态C2分子的发光光谱,它们可归属为Swan带的d^3Ⅱg=a^3Ⅱu跃迁中△v=2,1,0,-1,-2五个振动序列(v′≤6)。谱强度分析表明,C2激发态可很好的用热平衡描述,其振动温度达6000K左右。同时在△v=0和-1的振动带间观测到振荡的谱峰,它们是转动谱线叠加的结果。激光烧蚀Al产生的等离子体在膨胀中产生的激波及其本身的动能与反应气体碰撞使其解离产生C,然后复合形成C2。C2激发态d可能是通过激发态的Al(^2S)经近共振传能产生,也不排除在有足够碰撞能下优先形成C2激发态b,再通过与d态的v′=6能级交叉无辐射跃迁而进入d态。  相似文献   

20.
We explore the zero-temperature statics of an atomic Bose-Einstein condensate in which a Feshbach resonance creates a coupling to a second condensate component of quasibound molecules. Using a variational procedure to find the equation of state, the appearance of this binding is manifest in a collapsing ground state, where only the molecular condensate is present up to some critical density. Further, an excited state is seen to reproduce the usual low-density atomic condensate behavior in this system, but the molecular component is found to produce a coherent, many-body decay, quantified by the imaginary part of the chemical potential. Most importantly, the unique decay rate dependencies on density (approximately rho (3/2)) and on scattering length (approximately (5/2)) can be measured in experimental tests of this result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号